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Overview



Overview
 Presentation of me
 A little on Combinatorial Puzzles, Constraint 

Programming (CP), and MiniZinc
 SEND+MORE=MONEY
 Sudoku
 More puzzles showing features of CP



About me
 Håkan Kjellerstrand (hakank@gmail.com)

http://hakank.org/
http://hakank.org/minizinc/

 GitHub: https://github.com/hakank/hakank
 Twitter: https://twitter.com/hakankj
 Facebook: https://www.facebook.com/hakankj
 StackOverflow: 

https://stackoverflow.com/users/195636/hakank

mailto:hakank@gmail.com
http://hakank.org/
http://hakank.org/
https://github.com/hakank/hakank
https://twitter.com/hakankj
https://www.facebook.com/hakankj
https://stackoverflow.com/users/195636/hakank


Background
 First: Tester, Technical Support, Technical Writer 

(1982-1994)
 Then: Software developer (1996-2019)
 2008: Constraint Programming as a hobby
 Now: Independent Researcher / Consultant

Constraint Programming, Logic Programming, etc.



What do I do with CP?
 Constraint models on puzzles, combinatorial 

problems, and some serious stuff: consulting,  mostly 
scheduling problems

 Testing different CP systems (~30) and complains 
about bugs/missing features/etc
http://www.hakank.org/common_cp_models/

 First CP dedicated blog (2009):  

My Constraint Programming Blog

http://hakank.org/constraint_programming_blog/



Some of my puzzle models
A Digital Difficulty, A Round of Golf, ABC Endview, Age of three Children,  All interval, Ambigous dates, Another kind of 
Magic Square, Archery Match, Archery puzzle, Arch Friends, Autoref, Balanced brackets, Bales of Hay, Bank card, Barrells 
puzzle, Binero/Binoxxo/Binary Sudoku, Birthday coins, Book buy, Bridge and Torch problem, Broken weights, Calculs 
d’Enfer, Chandelier balancing, Circling squares, Clock triplets, Coin problems (coin changes etc), Combination locks, 
Consecutive digits, Controversy about the weekday, Countdown, Crossfigure, Crosswords, Crypta, Crypto, Crystal maze, 
Curious set of integers, Curious numbers, de Bruijn sequences, Dice with a difference, Digits of the square, Dividing the 
spoils, Divisible by 9 through 1, Divisible by 1 to 9, Domino, Drive Ya Nuts, Bishop placement, Dudeney numbers, Einstein 
puzzle / Zebra puzzle, Some Enigma puzzles, Farmer and cow problem, Fill a pix,  Five brigades, Five brigands, Five 
elements, Five statements, Five words that share no letters, Four islands, Funny dice, Futoshiki, Golomb ruler, Grocery 
puzzle, Hanging weights, Hitori, Gunport problem, Harry Potter Seven Potions, Hidato, Ice cream, Jive turkeys, Jobs puzzle, 
Just forgotten, Kakurasu, Kakuro, KenKen, Killer Sudoku, Knight tour, Kojun, Kyudoku, Labeled dice, Langford’s number 
problem, Least difference, Letter square, Lights out, M12 puzzle, Magic sequences, Magic series, Magic square and cards, 
Magic squares, Magic Sudoku, Manasa and stones, Map coloring, Minesweeper, Mislabeled boxes, Missing digit, Monkey & 
Coconuts, Monks and doors, Monorail, Move one coins, Multi Sudoku, Music Men, N-queens, Non dominant queens, 
Nonograms, Nontransitive dice, N-puzzle, Number locks, Numberlink, Numbrix, One off digit problem, Ormat games, 
Pandigital numbers, Perfect square sequence, Photo problem, Pi Days Sudoku, Pool ball triangles, Prime multiplication, 
Pyramid of numbers, Rectangle placements, Rogo, Rookwise chain, Safe cracking, Samurai puzzle, Sangraal puzzle, Secret 
santa, Self referential quiz, Self referential sentence, Rotation puzzle, SEND+MORE=MONEY, SEND+MOST=MONEY, 
Seseman puzzle, Shikaku, Sicherman dice, Ski assignment, SET puzzle, Skyscraper, Smullyan’s Knight and Knaves 
problem, Solitaire, Square root of Wonderful, Stamp licking, Strimko, Sudoku, Suguru, Sumaddle, Sumbrero, Survo puzzle, 
Takuzu, Ten statements, The Paris Marathon problem,  The Vicar’s age, Three jugs problem, Three in a row puzzle, Twelve 
statements, Twin letters, Two cube calendar, Uniform dice, Who killed Agatha, Wine cask puzzle, Word golf, Wijuko



The Picat book (2015)
Zhou, Kjellerstrand, Fruhman:
Constraint Solving and Planning with Picat
Springer (2015)

http://picat-lang.org/picatbook2015.html

(Free PDF available)

Especially the chapters on CP:
- 2. Basic Constraint Modeling 
- 3. Advanced Constraint Modeling

My Picat page: http://hakank.org/picat/

http://picat-lang.org/picatbook2015.html


Combinatorial puzzles



Combinatorial puzzles
 Not well defined
 Single person puzzles based on integers/finite 

domains (including booleans).
 Logicial puzzles, mathematical recreation 

problems, pen-and-paper/grid puzzles
 Sometimes with some initial hints
 Sometimes exactly one solution



Constraint Programming



What is CP used for?
 Scheduling, Resource allocation, Staff rostering
 Packing problems
 Vehicle / transport routing / TSP
 Constraint satisfaction problems (CSP)
 Combinatorial search and optimization
 Etc.
 And: Solving puzzles!



General concepts in CP
 Decision variables with finite domains 

(integers)
 Constraints relating these variables to each 

other
 Find a solution (or many/all solutions) satisfiing 

all the constraints and the domains of the 
variables. Or show than there is no solution.



MiniZinc



MiniZinc
 https://www.minizinc.org/

https://github.com/MiniZinc
 MiniZinc Handbook:

https://www.minizinc.org/doc-latest/index.html
 MiniZinc-Python

https://minizinc-python.readthedocs.io/en/latest/
 MiniZinc Challenge:

https://www.minizinc.org/challenge.html
 My MiniZinc Page

http://hakank.org/minizinc/

https://www.minizinc.org/
https://minizinc-python.readthedocs.io/en/latest/


MiniZinc
 High level constraint modeling language
 Many different constraint solvers
 Support for many global constraints
 Not a full fledged programming language. 

For more complex tasks a proper programming 
language might be needed, e.g. MiniZinc-Python



MiniZinc: parts of a model 
 Include statement
 Parameters, fixed data (hints)

Can be in a separate data file
 Decision variables with domains
 Constraints
 Solve statement
 Output section



SEND+MORE=MONEY
First puzzle



SEND+MORE=MONEY
 Assign a distinct digit (0..9) to each of the letters 

(S,E,N,D,M,O,R,Y) so this equation is satisfied:

    SEND+MORE=MONEY

with S and M > 0



SEND+MORE=MONEY: Parameters, decision variable with domains

% Fixed parameter
int: N = 9;  % upper bound of the domain

% Decision variables with domains
var 0..N: s;   % ‘s’ can be assigned to any values between 0..9
var 0..N: e; 
var 0..N: n; 
var 0..N: d;
var 0..N: m; 
var 0..N: o; 
var 0..N: r; 
var 0..N: y;



SEND+MORE=MONEY: The constraints

% All values must be distinct
constraint all_different([s,e,n,d,m,o,r,y]);

% The equation SEND + MORE = MONEY
constraint
            1000*s + 100*e + 10*n + d  +  
            1000*m + 100*o + 10*r + e  = 
  10000*m + 1000*o + 100*n + 10*e + y

  /\ % leading digits cannot be 0
  s > 0 /\ m > 0;



SEND+MORE=MONEY: Solve statement

% We want all solutions

solve satisfy; 



SEND+MORE=MONEY: The complete model

include(“globals.mzn”); % for loading definition of all_different

int: N = 9;

var 0..N: s; var 0..N: e; var 0..N: n; var 0..N: d;
var 0..N: m; var 0..N: o; var 0..N: r; var 0..N: y;

constraint all_different([s,e,n,d,m,o,r,y]);
constraint
            1000*s + 100*e + 10*n + d  +  
            1000*m + 100*o + 10*r + e  = 
  10000*m + 1000*o + 100*n + 10*e + y 
  /\
  s > 0 /\m > 0;

solve satisfy;



SEND+MORE=MONEY: Solution

$ minizinc send_more_money.mzn -a 

s = 9;
e = 5;
n = 6;
d = 7;
m = 1;
o = 0;
r = 8;
y = 2;
----------
==========

SEND + MORE = MONEY
9567 + 1085 = 10652

Command line: Using -a (all solutions) to ensure a unique solution. 
In MiniZincIDE there’s an option to show all solutions.



MiniZincIDE

Though I tend to use Emacs



MiniZincIDE: model



MiniZincIDE output



Sudoku



Sudoku

Source: Wikipedia



Sudoku
 Given a N x N grid with values 1..N,  together with 

some hints, ensure that:
 All values in each row are all different
 All values in each column are all different
 All values in each sub grid (√N x √N) are all 

different



Sudoku
The rules of Sudoku = The constraints



Sudoku: The setup, include, parameters and decision variables

include "globals.mzn";

% parameters
int: n;                 % size of grid (n x n)
int: m = ceil(sqrt(n)); % size of sub regions

% decision variables
array[1..n, 1..n] of var 1..n: x;

solve satisfy;



Sudoku: Convert the rules to constraints

constraint

  forall(i in 1..n) (
    % All values in each row are all different
    all_different([x[i,j] | j in 1..n]) /\

    % All values in each column are all different
    all_different([x[j,i] | j in 1..n]) 
  )

  /\
  % All values in each sub grid (√N x √N) are all different
  forall(i in 0..m-1,j in 0..m-1) (
    all_different([x[r,c] | r in i*m+1..i*m+m, c in j*m+1..j*m+m])
  );



Sudoku: Simple problem instance  (4x4)

n = 4;

%
% The integers are the given hints.
% '_' represents an unknown value.
%
x = array2d(1..n, 1..n, [   
  4, _,  _, _,
  3, 1,  _, _,

  _, _,  4, 1,
  _, _,  _, 2,
]);



Sudoku: solution

4 2 1 3
3 1 2 4
2 3 4 1
1 4 3 2
----------
==========



Sudoku 4x4
Simple constraint propagation



Constraint Propagation
 A simplified example of how a CP solver solves a 

problem using Constraint Propagation
 Not all constraint solvers use this technique, but it 

can be instructive to see what is happening under 
the hood of a constraint solver.

 Some other solving techniques: SAT, Linear 
Programming, Integer programming, SMT, Lazy 
Clause Generation, Local Search.



Sudoku 4x4 – simple propagation example

4 _  _ _
3 1  _ _

_ _  4 1
_ _  _ 2

The (unique) solution

4 2  1 3
3 1  2 4

2 3  4 1
1 4  3 2

How does a CP solver reach this solution?



Sudoku 4x4 – simple propagation example

4 1234  1234 1234   

3 1   1234 1234

1234 1234  4 1
1234 1234  1234  2

Add DOMAINS (1..4) to all 
unknown variables. 
Hints are FIXED already.

Now we will propagate the 
three alldifferent constraints:
- all_different(ROW)
- all_different(COLUMN)
- all_different(BLOCK)

This is a very simplified example.
Real CP systems use more intelligent
propagation.



Sudoku 4x4 – simple propagation example

4  2    1234 1234   

3 1   1234 1234

1234 1234  4 1
1234 1234  1234  2

Cell (1,1): Fixed value (4). 

Cell (1,2): Reduce:
                - remove 4 (row, block)

         - remove 1 (column, block)
                - remove 3 (block)
                → Single value: 2



Sudoku 4x4 – simple propagation example

4  2    1 3  1234    

3 1   1234 1234

1234 1234  4 1
1234 1234  1234  2

Cell (1,3): Reduce:
                - remove 4 (row, column)

         - remove 2 (row)
                → {1 3}



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1   1234 1234

1234 1234  4 1
1234 1234  1234  2

Cell (1,4): Reduce:
         - remove 4 (row)

                - remove 1 (column)
                - remove 2 (column)
                → 3

Note: Here we don't go back to
          fix cell (1,3).

Cell (2,1): fixed (3)
Cell (2,2): fixed (1)



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2   1234

1234 1234  4 1
1234 1234  1234  2

Cell (2,3): Reduce:
                - remove 3 (row)

         - remove 1 (row)
         - remove 4 (column)

                → 2



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

1234 1234  4 1
1234 1234  1234  2

Cell (2,4): Reduce:
                - remove 3 (row)

         - remove 1 (row, column)
         - remove 2 (row, column)

                → 4



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

 2   1234  4 1
1234 1234  1234  2

Cell (3,1): Reduce:
                - remove 4 (row, column)

         - remove 1 (row)
         - remove 3 (column)

                → 2



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

 2     3   4 1
1234 1234  1234  2

Cell (3,2): Reduce:
                - remove 1 (row, column, block)

         - remove 2 (row)
                - remove 4 (row)
                → 3



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

 2     3   4 1
1234 1234  1234  2

Cell (3,3): Fixed.
Cell (3,4): Fixed.



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

 2     3   4 1
1    1234  1234  2

Cell (4,1): Reduce
                - remove 2 (row)
                - remove 4 (column)
                - remove 3 (column)
                → 1



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

 2     3   4 1
1         4  1234  2

Cell (4,2): Reduce
                - remove 1 (row)
                - remove 2 (row)
                - remove 3 (column)
                → 4



Sudoku 4x4 – simple propagation example

4  2    1 3    3    

3 1    2      4

 2     3   4 1
1       4    3   2

Cell (4,3): Reduce
                - remove 2 (row, block)
                - remove 4 (column, block)

–     - remove 1 (block)
                → 3

Cell (4,4):  Fixed 2

Are we finished? No! 

There is still a variable/cell with
no single assignment, i.e. Cell (1,3).



Sudoku 4x4 – simple propagation example

4  2    1      3    

3 1    2      4

 2     3   4 1
1       4    3   2

Cell (1,3): Reduce
                - remove 3 (row, block)
                → 1

And now all variables has been
assigned to a single value.



Sudoku 4x4 – simple propagation example

4 2  1 3 
3 1  2 4

2 3  4 1
1 4  3 2

… and we got a solution!

It is unique – as a Sudoku should be.



Magic squares



Magic squares
 Place all numbers 1..N*N in a NxN grid with 

a magic total (M) such that
 The sum of each row = M
 The sum of each column = M
 The sum of main diagonal = M
 The sum of opposite diagonal = M
 The magic total M = N*(N*N+1) // 2



Magic squares: 3x3

Source: https://en.wikipedia.org/wiki/Magic_square



Magic squares: Modeling
 What are the parameters?
 What are the decision variables and their 

domains?
How to represent them?

 What are the constraints?
How to model them?

 One, two, all solutions?



Magic squares: Parameters

include "globals.mzn";
int: n;
int: total = (n*(n*n + 1)) div 2;



Magic squares: Decision variables

array[1..n,1..n] of var 1..n*n: magic;



Magic squares: Constraints

constraint
  all_different(magic)

  /\ % rows
  forall(i in 1..n) (
    sum(j in 1..n) (magic[i,j]) = total
  ) 
  /\ % columns
  forall(j in 1..n) (
    sum(i in 1..n) (magic[i,j]) = total
  )
  /\ % main diagonal (/) 
  sum(i in 1..n) (magic[i,i]) = total

  /\ % secondary diagonal (\) 
  sum(i in 1..n) (magic[i,n-i+1]) = total
;



Magic squares: Complete model (slightly shorter)

include "globals.mzn";
int: n;
int: total = (n*(n*n + 1)) div 2;

array[1..n,1..n] of var 1..n*n: magic; % decision variables

solve satisfy;

constraint
  all_different(magic)
  /\
  forall(i in 1..n) (
    sum(j in 1..n) (magic[i,j]) = total /\ % rows
    sum(j in 1..n) (magic[j,i]) = total    % columns
  )
  /\ % main diagonal (/) 
  sum(i in 1..n) (magic[i,i]) = total
  /\ % secondary diagonal (\) 
  sum(i in 1..n) (magic[i,n-i+1]) = total
;



Magic squares: Solutions (n=3, all 8 solutions)

2  9  4             2  7  6 
7  5  3             9  5  1 
6  1  8             4  3  8 
----------          ----------
8  3  4             4  3  8
1  5  9             9  5  1
6  7  2             2  7  6
----------          ----------
6  7  2             8  1  6 
1  5  9             3  5  7 
8  3  4             4  9  2 
----------          ----------
4  9  2             6  1  8 
3  5  7             7  5  3 
8  1  6             2  9  4 
----------          ----------
                    ==========

 
 
 



Magic squares 
Symmetry breaking

(Frenicle standard form)



Symmetry breaking
 For certain problems there are symmetries in the 

solutions.
 If we are not interested in all solutions, we can 

break symmetries by some ordering constraint. 
For example the increasing constraint.

 Can make the solving - sometimes considerably -  
faster



Magic Square: Frénicle form
Frénicle standard form (after Bernard Frénicle de 
Bessy):

 The element at position magic[1,1] is the smallest 
of the four corner elements

 The element at position magic[1,2] is smaller than 
the element in magic[2,1].

 This removes the 8 symmetries (rotations, flips, etc)



Magic squares: Symmetry breaking, Frénicle form

constraint
  magic[1,1] = min([magic[1,1], magic[1,n], magic[n,1], magic[n,n]])
  /\
  magic[1,2] < magic[2,1]
;



Magic squares: Number of solutions

N    W/o symmetry breaking     With Frénicle form
---------------------------------------------------
1            1                         -
2            0                         0  
3            8                         1  (8/8)
4         7040                       880  (7040/8)
5   2202441792                 275305224  



Babysittning
Logic puzzle

Element constraint



Element constraint
 CP’s version of indexing an array/matrix
 In MiniZinc, this is stated as

     z = x[y]
 x: an array of integers or decision variables
 y: integer/enum or decision variable
 z: integer/enum or decision variable
 In other CP systems this is called element(y,x,z) etc



Babysittning puzzle (1/2)
(Dell Logic puzzle, 1998)

Each weekday, Bonnie takes care of five of the 
neighbors' children. The children's names are 
Keith, Libby, Margo, Nora, and Otto; last names 
are Fell, Gant, Hall, Ivey, and Jule. Each is a 
different number of years old, from two to six. 
Can you find each child's full name and age?

(Next: The hints)



Babysittning puzzle (2/2)
The hints:

1. One child is named Libby Jule.

2. Keith is one year older than the Ivey child, who is 
one year older than Nora.

3. The Fell child is three years older than Margo.

4. Otto is twice as many years old as the Hall child.

Determine: First name - Last name - Age 



Babysitting: Parameters and decision variables

include "globals.mzn"; 

% Parameters
set of int: r = 1..5;
enum first_name = {Keith, Libby, Margo, Nora, Otto};

% Decision variables

array[r] of var 2..6: age;

var r: Fell;
var r: Gant;
var r: Hall;
var r: Ivey;
var r: Jule;
array[r] of var r: last_name = [Fell, Gant, Hall, Ivey, Jule];
% For the presentation
array[r] of string: last_name_s = ["Fell", "Gant", "Hall", "Ivey", "Jule"];

solve satisfy;



Babysitting: Constraints

constraint
  all_different(last_name) /\
  all_different(age)  /\

  %  1. One child is named Libby Jule.
  Jule = Libby /\

  %  2. Keith is one year older than the Ivey child, who is one 
  %     year older than Nora.
  Keith != Ivey /\ Ivey != Nora /\
  age[Keith] = age[Ivey] + 1 /\ % element with decision variables
  age[Ivey] = age[Nora] + 1 /\

  %  3. The Fell child is three years older than Margo.
  Fell != Margo /\
  age[Fell] = age[Margo] + 3 /\

  %  4. Otto is twice as many years old as the Hall child.
  Otto != Hall /\
  age[Otto] = age[Hall] * 2;



Babysitting: Solution

first name: {Keith, Libby, Margo, Nora, Otto}
last_name : [1, 4, 3, 5, 2] % lookup
age       : [5, 6, 2, 3, 4]

Keith Fell (5 yo)
Libby Jule (6 yo)
Margo Hall (2 yo)
Nora Gant (3 yo)
Otto Ivey (4 yo)
----------
==========

last_name_s = ["Fell", "Gant", "Hall", "Ivey", "Jule"];



Babysitting: Output section

output
[
  "first name: \(first_name)\n",
  "last_name : \(last_name)\n" ++
  "age       : \(age)\n\n"
] 
++
[ 
 "\(first_name[i]) " ++
 % Lookup of last name 
 [last_name_s[j] | j in r where fix(last_name[j]) = i][1] ++ " " ++
 "(\(age[i]) yo)\n"
 | i in r
];



Global constraints
Special designed algorithm for common constraints.

 all_different: all values must be distinct
 element: decision variables as indices in an array (as z=x[y])
 increasing: ordered values, symmetry breaking
 global_cardinality: counting the occurrence of values
 cumulative: scheduling
 regular: automata / regular expression
 table: allow only certain combinations of decision variables



Divisible by 1 to 9
Predicates



Divisible by 1 to 9
 Find a 10 digit number that uses each of the digits 

0 to 9 exactly once and where the number formed 
by the first n digits of the number is divisible by n.

(Source: Classic, via MindYourDecisions) 



Divisible by 1 to 9
 Let A, B, C, D, E, F, G, H, I, J be 10 different digits 

(with domains 0..9). Then

A mod 1 = 0

AB mod 2 = 0

...

ABCDEFGHI mod 9 = 0

ABCDEFGHIJ mod 10 = 0



Divisible by 1 to 9
 One approach would be the approach we used in 

SEND+MORE=MONEY:
 A mod 1 = 0 /\

(A*10 + B) mod 2 = 0 /\
...

(A*… + B* … + C* … + J) mod 10 = 0
 But that’s no fun. Let’s automate this using a 

predicate.



Divisible by 1 to 9: Predicate to_num

/*
  to_num(a, n, base)
  Ensure that the digits in array `a` corresponds to the number `n`, 
  in base `base`.
  Both `a` and/or `n` can be decision variables. 
  `base` is fixed

  Example: to_num([1,2,3], 123, 10).

*/
predicate to_num(array[int] of var int: a, var int: n, int: base) =
  let {     
    int: len = length(a) 
  } in
  n = sum(i in 1..len) ( base^(len-i) * a[i] )
;



Divisible by 1 to 9: Parameters, decision variables

int: base;
int: n = base;
int: m = ceil(pow(n,base))-1;   % 999999999 for base 10: 10^10-1

% Decision variables
array[1..n] of var 0..n-1: x;   % the digits: 0..9
array[1..n] of var 0..m: t;     % the numbers. t[n] contains the answer

base = 10;



Divisible by 1 to 9: Constraints

constraint
  all_different(x) /\

  % 
  % ensure that x[1..1] is divisible by 1
  % ensure that x[1..2] is divisible by 2
  % ...
  % ensure that x[1..9] is divisible by 9
  % ensure that x[1..10] is divisible by 10
  % 
  forall(i in 1..n) (
    % t[i] corresponds to the number for x[1..i]
    to_num(x[1..i], t[i], base) /\
    t[i] mod i = 0 % divisibility
  );    

  



Divisible by 1 to 9: Solution

base: 10
x: [3, 8, 1, 6, 5, 4, 7, 2, 9, 0]
t: [3, 38, 381, 3816, 38165, 381654, 3816547, 38165472, 381654729, 3816547290]
----------
==========

% Another base:
base: 8
x: [5, 2, 3, 4, 7, 6, 1, 0] % ← base 8 digits
t: [5, 42, 339, 2716, 21735, 173886, 1391089, 11128712]  % ← base 10 numbers
----------
base: 8
x: [3, 2, 5, 4, 1, 6, 7, 0]
t: [3, 26, 213, 1708, 13665, 109326, 874615, 6996920]
----------
base: 8
x: [5, 6, 7, 4, 3, 2, 1, 0]
t: [5, 46, 375, 3004, 24035, 192282, 1538257, 12306056]
----------
==========



Furniture moving
The “serious example”

Scheduling



Furniture moving
 Requirements

- Piano: 3 persons, 30 min
- Chair: 1 person, 10 min
- Bed: 3 persons, 15 min
- Table: 2 persons, 15 min

 Precedence constraint: The bed must be moved 
before the piano

 (From Marriott & Stuckey: “Programming with 
constraints”, 1998)



Furniture moving: Variables and data

include "globals.mzn";

enum Furnitures = {Piano, Chair, Bed, Table};
int: n; % number of things
int: upper_limit;
array[1..n] of int: durations;
array[1..n] of int: resources;
array[1..n] of string: names;

% decision variables
array[1..n] of var 0..upper_limit: start_times;
array[1..n] of var 0..upper_limit*2: end_times;
var 0..100: num_persons; 
var 0..100: end_time;

% data
n = 4;
upper_limit = 160;
durations = [30,10,15,15];
resources = [3,1,3,2];
names     = ["Piano","Chair","Bed","Table"];



Furniture moving: Constraints

constraint

   % cumulative(start_times,durations,required_resources,max_resource)
   cumulative(start_times, durations, resources, num_persons)

   /\ % calculate end time for each task
   forall(i in 1..n) (end_times[i] = start_times[i] + durations[i])

   /\ % first job starts at time 0
   min(start_times) = 0

   /\
   end_time = max(end_times)

   /\ % move the bed before the piano
   end_times[Bed] < start_times[Piano]

   /\ % max number of people
   num_persons <= 4
;



Furniture moving: (multi) objective and output

% …

solve minimize num_persons * end_time; % multi-objective

output [
       "num_persons: \(num_persons)\n”,
       "resources  : \(resources)\n",
       "start_times: \(start_times)\n",
       "durations  : \(durations)\n",
       "end_times  : \(end_times)\n",
       "end_time   : \(end_time)\n",
       show_gantt(start_times,durations,names)
];



Furniture moving: Solution for minimize num_persons*end_time



Nonogram
Regular constraint



Nonogram
https://www.csplib.org/Problems/prob012/

 A grid puzzle where the hints are the number of 
chunks of filled cells

 The hint “2 2” means that 
there must be two cells filled,
followed by at least 
one empty cell, followed by
two filled cells.

Source: Wikipedia



Nonogram - regexes
 Regular expressions to the rescue!
 We model this as a grid of 0s (empty cells) and 1s 

(filled cells).
 The hint “2 2” can then be translated to the regex

”0*110+110*”
or
”0*1{2}0+1{2}0*”

 The global constraint regular supports this.



Nonogram: Setup and output

include "globals.mzn"; 

% Parameters
int: r; % number of rows
int: c; % number of columns
array[1..r] of string: rows; % row hints
array[1..c] of string: cols; % column hints

% Decision variables
array[1..r,1..c] of var 0..1: x; % 1: filled, 0: not filled

solve satisfy;

output [
  if j = 1 then "\n" else "" endif ++
     if fix(x[i,j]) = 0 then " " else "#" endif    
  | i in 1..r, j in 1..c
] ++ [ "\n" ];

 



Nonogram: Problem instance (the “P” instance)

r = 11; c = 8;
rows = ["0+",                   %   0 
        "0* 1{4} 0*",           %   4
        "0* 1{6} 0*",           %   6
        "0* 1{2} 0+ 1{2} 0*",   % 2 2
        "0* 1{2} 0+ 1{2} 0*",   % 2 2
        "0* 1{6} 0*",           %   6 
        "0* 1{4} 0*",           %   4
        "0* 1{2} 0*",           %   2
        "0* 1{2} 0*",           %   2
        "0* 1{2} 0*",           %   2
        "0+"];                  %   0
cols = [
        "0+",                   %   0 
        "0* 1{9} 0*",           %   9 
        "0* 1{9} 0*",           %   9
        "0* 1{2} 0+ 1{2} 0*",   % 2 2 
        "0* 1{2} 0+ 1{2} 0*",   % 2 2
        "0* 1{4} 0*",           %   4 
        "0* 1{4} 0*",           %   4 
        "0+"];                  %   0 
 



Nonogram: Constraints

constraint
  % Row hints
  forall(i in 1..r) (
    regular([x[i,j] | j in 1..c], rows[i])
  )
  /\ 
  % Column hints
  forall(j in 1..c) (
    regular([x[i,j] | i in 1..r], cols[j])
  )
;



Nonogram: Solution

        
 ####   
 ###### 
 ##  ## 
 ##  ## 
 ###### 
 ####   
 ##     
 ##     
 ##     
        
----------
==========



Regular constraint
 regular/2 is a wrapper for the general regular/6 

constraint: a constraint for an automaton
regular(automaton, n_states, input_max, 
transition,initial_state,accepting_states)

 Rostering, scheduling, sequencing, etc. 
And Puzzles: pentonomies, the 3 jugs problem, etc

 My original Nonogram solver used this version of 
regular: quite hairy MiniZinc code to convert hints 
to automaton



Regular constraint
Simple automaton for nurse rostering shifts:

Shifts d:day, n:night, o:off   (From the MiniZinc Tutorial) 

1 2

3

4

5

6

o

o o

o

o

o

d {d,n} {d,n}

n d d

n



Crossword
Table constraint



Crossword
Problem instance from Bratko “Prolog 
Programming for AI”, 4th ed (2011, p 27)



The table constraint
 Restricts the allowed assignments for a collection of 

decision variables.
 The constraint
   table([A,B,C,D], array2d(1..3,1..4,
                            [1,2,3,4,
                             2,3,4,1,
                             3,4,1,2]));

restricts the variables A, B, C, and D to be either
 A=1, B=2, C=3, D=4 or
 A=2, B=3, C=4, D=1 or
 A=3, B=4, C=1, D=2



Crossword: Data, the words (skipping some declarations)

enum alpha = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z};
words3 = array2d(1..num_words3, 1..3,
    [d,o,g,
     r,u,n,
     t,o,p]);
words4 = array2d(1..num_words4, 1..4,
    [f,i,v,e,
     f,o,u,r,
     l,o,s,t,
     m,e,s,s,
     u,n,i,t]);
words5 = array2d(1..num_words5, 1..5,
    [b,a,k,e,r,
     f,o,r,u,m,
     g,r,e,e,n,
     s,u,p,e,r]);
words6 = array2d(1..num_words6, 1..6,
    [p,r,o,l,o,g,
     v,a,n,i,s,h,
     w,o,n,d,e,r,
     y,e,l,l,o,w]);



Crossword: Data, the problem instance

%
%  L1   L2    L3   L4    L5   XXX
%  L6   XXX   L7   XXX   L8   XXX
%  L9   L10   L11  L12   L13  L14
%  L15  XXX   XXX  XXX   L16  XXX
%

problem = array2d(1..rows, 1..cols,
   [ 1,   2,   3,   4,   5,   0,
     6,   0,   7,   0,   8,   0,
     9,  10,  11,  12,  13,  14,
    15,   0,   0,   0,  16,   0]);



Crossword: Constraints

%
%  L1   L2    L3   L4    L5   XXX
%  L6   XXX   L7   XXX   L8   XXX
%  L9   L10   L11  L12   L13  L14
%  L15  XXX   XXX  XXX   L16  XXX
%

%
% Find the words
%
constraint
   % rows
   table([L[1],L[2],L[3],L[4],L[5]], words5)            /\
   table([L[9],L[10],L[11],L[12],L[13],L[14]], words6)  /\

   % columns
   table([L[1],L[6],L[9],L[15]], words4)                /\
   table([L[3],L[7],L[11]], words3)                     /\
   table([L[5],L[8],L[13],L[16]], words4)
;



Crossword: Solution (unique)

%
%  L1   L2    L3   L4    L5   XXX
%  L6   XXX   L7   XXX   L8   XXX
%  L9   L10   L11  L12   L13  L14
%  L15  XXX   XXX  XXX   L16  XXX
%

f o r u m _
i _ u _ e _
v a n i s h
e _ _ _ s _

----------
==========



Crossword: Larger instances
 In 2011, I did some experiments with crossword 

grids of different sizes (5x5..23x23) and a much 
larger word list

 MiniZinc: 
http://www.hakank.org/minizinc/crossword3/

 In Picat: http://hakank.org/picat/crossword3/



Crossword: Problem #39  21x21 chars (* is a blank)

_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ * _ _ _ _ _ _ _ _ _ _ _ _ _ * _ _ _
_ _ _ _ * _ _ _ _ _ _ _ * _ _ _ * _ _ _ _
_ _ _ _ _ * _ _ _ _ _ * _ _ _ * _ _ _ _ _
_ _ _ _ _ _ * _ _ _ * _ _ _ * _ _ _ _ _ _
* * * _ _ _ _ _ _ * _ _ _ _ _ _ _ _ * * *
_ _ _ _ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _
_ _ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _ _
_ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _ _ _ _
* * * _ _ _ _ _ _ _ _ * _ _ _ _ _ _ * * *
_ _ _ _ _ _ * _ _ _ * _ _ _ * _ _ _ _ _ _
_ _ _ _ _ * _ _ _ * _ _ _ _ _ * _ _ _ _ _
_ _ _ _ * _ _ _ * _ _ _ _ _ _ _ * _ _ _ _
_ _ _ * _ _ _ _ _ _ _ _ _ _ _ _ _ * _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _



Crossword: Problem #39 Solution (English words)

salmons*imams*corrupt
amoebic*marco*oceania
leonine*pucks*stapler
ask*tenderhearted*erg
bloc*sterile*oat*care
lauri*spicy*cur*corot
entomb*ale*tot*mounts
***spears*fruition***
prosiest*diurnal*tags
limbers*palsied*merle
averts*arieses*garden
taney*smarter*cartons
else*junkies*sauterne
***diapered*berlin***
amping*sis*cat*snooze
gains*fit*barth*array
agog*bra*forbear*sane
inn*electioneered*nil
needles*altar*perigee
steuben*beige*evilest
tornado*steed*repasts



Crossword: Problem #39 (Swedish words)

absiden*kosta*avkylas
mikaela*älvor*variant
tvingad*raabe*bringor
mal*skjortlinning*fri
axla*earlens*eda*gödd
nerts*skara*ada*forne
stalin*ass*dra*daddan
***asiens*barnbeck***
skostans*datafel*ädel
mambons*tidebön*anala
albins*bevarar*monsun
klene*synodal*nyrakad
sard*bestred*multnats
***nånstans*bostad***
skvimp*ena*dat*anette
tvina*ord*durka*snara
rigg*ren*pianino*agar
yls*betacellulosa*gul
kleresi*allen*ragtime
erlades*slang*aningar
rasmark*herse*knotans



Magic Sequence
Redundant constraints

Reversibility



Redundant constraints
 Sometimes it is possible to add extra – 

redundant – constraints which sometimes can 
speed things up

 They do not remove any solutions from the “base 
model”

 Contrast with symmetry breaking constraints 
which also often speed things up, but they 
remove solutions



Magic sequence
https://www.csplib.org/Problems/prob019/

 A magic sequence of length N is a sequence of integers 
x[0] . . x[N-1] between 0 and N-1, 
such that for all i in 0 to N-1, the number i occurs exactly 
x[i] times in the sequence. 

 For n= 10
  6,2,1,0,0,0,1,0,0,0 
is a magic sequence since ‘0’ occurs 6 times, ‘1’ occurs 
twice, ‘6’ occurs 1 time (and the rest 0 times)

 This is a self referential sequence



Magic sequence: First model (“direct” encoding)

int: n
array[0..n-1] of var 0..n-1: s;

solve satisfy;

constraint
  forall(i in 0..n-1) (
    s[i] = sum([s[j] = i | j in 0..n-1])
  )
;

Quite straightforward: the value of s[i] is the number of occurrences in s which contains the value i.



Magic sequence: Second model, add redundant constraints

int: n
array[0..n-1] of var 0..n-1: s;

solve satisfy;

constraint
  forall(i in 0..n-1) (
    s[i] = sum([s[j] = i | j in 0..n-1])
  )
  /\ 
  sum(s) = n 
  /\
  sum(i in 0..n-1) (s[i]*i) = n
;

Adding some ‘redundant’ constraints to speed up the search:
- the sum of s is n
- the sum of s[i]*i is also n



Magic sequence: Third model, using global_cardinality

int: n
array[0..n-1] of var 0..n-1: s;

solve satisfy;

constraint
  
  global_cardinality(s,array1d(0..n-1, index_set(s)), s) 
  /\ 
  sum(s) = n 
  /\
  sum(i in 0..n-1) (s[i]*i) =n 
;

Replace the first sum with the global constraint global_cardinality 
(a.k.a. global_cardinality_count):
    global_cardinality(a,cover,counts) 
where counts[i] is the number of occurrences of cover[i] (here 0..n-1) in array a



Magic sequence: Comparing models (with Gecode solver)

N    Model   Time (s)
---------------------
10     model1   0.15s
10     model2   0.08s
10     model3   0.20s

100    model1   0.41s
100    model2   0.40s
100    model3   0.13s

500    model1  17.49s
500    model2  10.45s
500    model3   0.15s

1000   model2  43.05s
1000   model3   0.37s

10000  model3  31.78s

(Removed models which timed out: > 60s)



Reversibility
 A.k.a. bidirectionality, multidirectionality (cf Prolog)
 A decision variable can be input and/or output
 Given the decision variables A, B, and C and 

constraint A + B = C
* Known A and B → C
* Known B and C → A
* Known A and C → B
* Known A → Domain reduction in B and C
  (perhaps)



Conclusions/Summary



Conclusions/Summary
Constraint Programming / Modeling

 Powerful
 Is fun
 Can be used to explore combinatorial problems
 A special mindset is required
 Though it’s not a silver bullet. Sometimes special 

algorithms might be faster or better suited.



More on CP



References (mine)
 Homepage: http://hakank.org/
 My MiniZinc page: http://hakank.org/minizinc/
 My Picat page: http://hakank.org/picat/
 Common CP models:

http://hakank.org/common_cp_models/
 The Picat book

http://picat-lang.org/picatbook2015.html
(PDF available for free)

http://hakank.org/
http://hakank.org/minizinc/
http://hakank.org/common_cp_models/
http://picat-lang.org/picatbook2015.html


References
 CP/MiniZinc-courses (Coursera):

- Basic Modeling for Discrete Optimization
- Solving Algorithm for Discrete Optimization
- Advanced Modeling for Discrete Optimization

 The NordConsNet site 
http://www.it.uu.se/research/NordConsNet
has a lot of information and references on CP and 
constraint modeling

http://www.it.uu.se/research/NordConsNet


Some Constraint systems
Some great Constraint systems/solvers (not necessary CP)

 MiniZinc: The system used in this talk
 Google OR-tools (Python, C#, C++): Often very fast (CP-SAT)
 Chuffed (in MiniZinc)
 Gecode (C++)
 Choco, JaCoP (Java)
 CPMPy (Python): high level wrapper around MiniZinc, OR-tools, PySAT and Z3
 Prolog (CLP): SICStus Prolog, ECLiPSe CLP, SWI-Prolog, etc
 Microsoft’s Z3 theorem prover: Many nice features
 Picat - my “Thinking language”

(“Prolog” + constraints + functions and imperative constructs. CP/SAT/SMT/MIP 
constraint solvers)



Some CP related conferences
CP 2023 

NordConsNet 2023



Conferences
 The 29th International Conference on Principles and 

Practice of Constraint Programming (“CP 2023”)
August 27 - 31, 2023, Toronto, Canada
https://cp2023.a4cp.org/index.html

 The Nordic Network for researchers and practitioners 
of Constraint programming (NordConsNet)
June 8 – 9, 2023, Odense, Denmark
https://event.sdu.dk/nordconsnet2023/

(See http://www.it.uu.se/research/NordConsNet )

https://event.sdu.dk/nordconsnet2023/
http://www.it.uu.se/research/NordConsNet


Thank you!
Questions?

http://hakank.org/cp_mensa_2023/



Post talk slides
(including quite a few other models)



all_different_except_0
Reification



Reification
“Reasoning” about constraints/boolean variables

 Implication: constraint1 → constraint2
 Equivalence: constraint1 ↔ constraint2
 not
 /\: and
 \/: or
 false: 0, true: 1



all_different_except_0

%
% all_different_except_0(x)
% Ensures that all values that are != 0 are distinct.
% 
% Note: This constraint has another definition in the MiniZinc 
%       distribution.
%
predicate all_different_except_0(array[int] of var int: x) =
  foreach(i, j in index_set(x) where i < j) (
    (x[i] != 0 /\ x[j] != 0) -> x[i] != x[j]
  );



Selected publications
 Soto, Kjellerstrand, et.al: Cell formation in group 

technology using constraint programming and Boolean 
satisfiability (2012)

 Kjellerstrand: Picat: A logic-based multi-paradigm language 
(2014)

 Zhou, Kjellerstrand: Solving several planning problems with 
Picat (2014)

 Zhou, Kjellerstrand: The Picat-SAT compiler (2016)
 Rohner, Kjellerstrand: Using logic programming for theory 

representation and scientific inference (2021)
 And … 



Constraint Modeling
This talk focuses on the modeling part and should 
really be called 

   ”Constraint Modeling - 
   Solving combinatorial puzzles when you are lazy”



Important features of CP
 Propagation
 Global constraints
 Reification
 Reversibility
 Symmetry breaking
 Redundant constraints



Debugging in CP
 Test early and often

While learning CP: test after adding each constraint
 Check the domains
 First test a small instance for which you know the 

answer 
 If the model does not work:

- remove one constraint after another and test again
- check the domains again



Conclusions/Summary
Compared to imperative programming languages:
 There are no (re)assignments: if the model tries to 

assign a decision variable with two different values then 
it is a failure →  backtracks to another possible solution.

 Forall loops are not like imperative for loops; they are 
only used to create constraints (in arrays)

 There are no while loops
 Debugging might be harder in CP than in imperative 

programming languages.



MiniZinc syntax



Syntax: Parameters/data
 Parameters, fixed data (hints)
int: n=4;
array[1..n] of int: a =[1,2,3,4]; % default 1-based

% When using a specific datafile (.dzn)

% This is in the model (.mzn) file
int: m;
array[1..m] of int: y;

% In the data .dzn file
m = 5;
y = [2,3,4,5,6];



Syntax:Variables / Domains
 Decision variables with an apropriate finite domain (integers, 

enums). 
 The unknowns that we want to find out the values for.
 Beware: Not like variables in Python, Java, C++, etc.

var bool: b;
array[1..n] of var 1..n: a;

array[1..n, 1..n] of var 1..n: x; % 2d array
var int: z = sum(x);

enum vals = {A,B,C,D};
array[1..3] of var vals: y;



Syntax: Constraints
 Constraints: Connecting decision variables

c = a + b             % arithmetic constraint

% Global constraints
all_different(x) 
increasing(x)         % symmetry breaking
z = x[y]              % element constraint

% Reification
x[1] > 10 -> x[2] < 2 % implication
a != 1 <-> b = 1      % equivalence

 include “globals.mzn” % definitions for constraints



Syntax:Solve
 Solving / optimization

% any solution, 1, 2, … all solutions
solve satisfy;

% optimization
solve minimize z; % or solve maximize y;

% search heuristics / labeling
solve::int_search(x,first_fail,indomain_min) 
satisfy;



Syntax: Output section
 Output section

output [ show(x) ];

output [ “\(x)\n” ];

output [
  “\(i): \(x[i])\n”
  | i in 1..n
] 
++
[“\(z)\n”];



Domains
 Domains 
var 0..9: a;
array[1..n] of var 0..9: x;

 Restricts the possible values of the decision variable, here the 
integers 0..9.

 Used in the solving phase where the current domain is 
propagated to the solver and can be reduced by activating 
the constraints. We see an example on this soon.

 Try to get the domains as small as possible (but not smaller)

 



Global constraints
 Special crafted (efficient) algorithms for common types of 

constraints, common structures
 Kind of “Patterns” / “Tool of Thought” when modeling 
 all_different(x)

Ensure that all values in the array x are distinct
 We will see more global variables in this talk
 Global Constraint Catalog (almost 300 different global 

constraints)
https://sofdem.github.io/gccat/gccat/titlepage.html
 



CP: Overview

 Searches through the complete search space
with intelligence: constraint propagation, domain 
reduction, and search heuristics (pruning the 
search space)

 Most CP solvers use some smart techique for 
searching and pruning the search tree.



CP: The declarative ideal
“Constraint Programming represents one of the 
closest approaches computer science has yet 
made to the Holy Grail of programming: the user 
states the problem, the computer solves it.” 

[E. Freuder, “In Pursuit of the Holy Grail”, 1997]



Sudoku: 25x25 problem instance

  11  23  13  10  19  16   6   2  24   7   5   9   1  20  17  15   8  18  25   3   4  12  21  22  14
  15  16   _  22   _  11   8   _   _   _  25   _  14   _   _   _  12  19   _   _  17   _   _   _   _
   _   _   _   _   _   _   _   _   _   _   _  16   _   4   _  17   _  13   _  24   _  23  19  10   2
   _   _   _   _   _  19   _  14  23   4   _  21   6  22  10   _  11   _   2   _   _   _   _   _   _
  17  14   _   _   2   _   _  13  12   _   _   _   _   _  15   4  20  22  10   _  11   _   9  24   8
  22   _   _   _   _   6   2   _   _   _   4   7  12   1   9   _   _   _   _   _   _  14   5   _   _
   _  18   2   _   8  22   _  19  16  21   _   _   _  10  13  23   _   _  20   _   _   3   _  15   7
   _   _  17   3   _   5   _   _   8   9   _   _   _   _  18   _  19   _   _   _   _   _  23  21   _
   1  11   _   _   9   _  15  10  25   _   6   _  23   _   _   _   _   5   3   7   _  17   _   _  24
   _   _   _   _   _   _   1   _   _  23   _   _   _  24   _   _   _  21  12   _   6   8   _  25  16
  20  24  10   _  15  23  11  17   _   _   _   _   _   7   _  12   _   _   _   _   _  22   _   _   6
   4   5   _  14  12  25   _  18   _   _  23   _  15   _  19   1   _   _   _  22  20   _   7   9   _
  18   _  21   _   _   8   _  24   _   _   9   _  25   _   _   _  10   _   _   _   2   _   1  19   _
   _   _   6   2   1   _  13   _  22   _   _   _   _   _  11   8  21  16   _   _  25   _   _  12  17
   _  17  25   _  23   7  14   _  21   1   _   _   _   _   3   _   _  11   _   _  24   _  16   4   5
   _   _   _   _  11  18  24   _   _   _   _   5   _  12   _  25   _   _   _  15  23   4   8  14   _
   _   _   _  15  21   _   _   _   _   _   2   _  13  17   _   _   1   7   _   _   5   9  24   _   _
   _   _  18   _  22  15   _   _   2  16   _  23   _   _   _  10   6  24   _  17  12   _  25  11   _
   7   2   _   1   _   _  21   _   _   _  18  22   _   9   6  14   _   4   5  16   _   _   _   _   _
   _   _   9   _   _   _   7  22   _   _  10   _  24   _   _   _  18   _   _   _  21   _   _   _   _
   _  12   _  19  10   _   _   _   _   _   _   _   _   _   1   _   _   _   _   _  14   _   4   8   _
  24   _  11  18   _   _   _   _   _   _   _  25  17  21   _   6   _   _   1   _   _   _   _   5  12
  16   6  22   _   _   _  23   4  15  18   8   _   _   _  20   _   _  17   _  14   _   _   _   _   _
   _  21   _   _   4   _   9   1   7   _   _   _   _  11  14   _  16   8  15   _  22   _  18   _   _
   8  15   _   _   _   _   _   _   5   _  24   3   _   _   4   _   _   _   9   _   _   _   _   _  20



Sudoku: 25x25 solution (PicatSAT: 0.2s)

  11  23  13  10  19  16   6   2  24   7   5   9   1  20  17  15   8  18  25   3   4  12  21  22  14
  15  16   4  22  18  11   8  21  20  10  25   2  14  13  24   7  12  19  23   9  17   5   6   1   3
  21   1   5  20  25   3  18  15   9  22  11  16   8   4  12  17  14  13   6  24   7  23  19  10   2
   3   8  12   9  24  19  17  14  23   4   7  21   6  22  10  16  11   1   2   5  15  18  20  13  25
  17  14   7   6   2   1   5  13  12  25   3  18  19  23  15   4  20  22  10  21  11  16   9  24   8
  22  19  23  21  13   6   2   3  17  24   4   7  12   1   9  11  15  25  16   8  18  14   5  20  10
  25  18   2  24   8  22   4  19  16  21  14  11   5  10  13  23  17   6  20   1   9   3  12  15   7
   6  10  17   3  16   5  12   7   8   9  15  20   2  25  18  22  19  14  24  13   1  11  23  21   4
   1  11  14  12   9  20  15  10  25  13   6   8  23  16  21  18   4   5   3   7  19  17  22   2  24
   5  20  15   4   7  14   1  11  18  23  17  19   3  24  22   9   2  21  12  10   6   8  13  25  16
  20  24  10  13  15  23  11  17  19   3  21   1  16   7   2  12   5   9   4  25   8  22  14  18   6
   4   5  16  14  12  25  10  18   6   2  23  13  15   8  19   1  24   3  17  22  20  21   7   9  11
  18  22  21  11   3   8  16  24   4  12   9  17  25  14   5  20  10  15   7   6   2  13   1  19  23
  19   7   6   2   1   9  13   5  22  15  20  24   4  18  11   8  21  16  14  23  25  10   3  12  17
   9  17  25   8  23   7  14  20  21   1  12  10  22   6   3   2  13  11  19  18  24  15  16   4   5
  10  13  19  16  11  18  24   6   3  17   1   5  20  12   7  25   9   2  21  15  23   4   8  14  22
  12  25   8  15  21  10  19  23  14  11   2   4  13  17  16   3   1   7  22  20   5   9  24   6  18
  14   4  18   5  22  15  20   9   2  16  19  23  21   3   8  10   6  24  13  17  12   7  25  11   1
   7   2  24   1  20  12  21  25  13   8  18  22  11   9   6  14  23   4   5  16  10  19  17   3  15
  23   3   9  17   6   4   7  22   1   5  10  14  24  15  25  19  18  12   8  11  21  20   2  16  13
  13  12  20  19  10  17   3  16  11   6  22  15   7   5   1  21  25  23  18   2  14  24   4   8   9
  24   9  11  18  14  13  22   8  10  19  16  25  17  21  23   6   7  20   1   4   3   2  15   5  12
  16   6  22  25   5   2  23   4  15  18   8  12   9  19  20  24   3  17  11  14  13   1  10   7  21
   2  21   3  23   4  24   9   1   7  20  13   6  10  11  14   5  16   8  15  12  22  25  18  17  19
   8  15   1   7  17  21  25  12   5  14  24   3  18   2   4  13  22  10   9  19  16   6  11  23  20



Minesweeper 
Reversibility



Minesweeper
Minesweeper – in this version – is a simple grid problem:

..2.3.

2.....

..24.3

1.34..

.....3

.3.3..

Each number represents how many bombs there are in the 8 nearby cells.

The “.” (dot) represents an unknown cell: either a bomb or not bomb.

Where are the bombs?



Minesweeper

..2.3.
2.....

..24.3

1.34..

.....3

.3.3..

For the green cell, ensure that there are exactly 4 bombs among the 8 
(vertical, horizontal, diagonal) neighbours.

A cell with a hint can not be a bomb.



Minesweeper: The setup, parameters and decision variables

% >= 0 for number of mines in the Moore neighbourhood
% (vertical, horizontal, and diagonal neighbours) 
array[1..r, 1..c] of -1..8: game;  % the hints

% decision variables: 0/1 for no bomb/bomb
array[1..r, 1..c] of var 0..1: mines;

% the hints
int: X = -1; % representing the unknowns in the hints
int: r = 6; % rows
int: c = 6; % column
game = array2d(1..r, 1..c, [
   X,X,2,X,3,X,
   2,X,X,X,X,X,
   X,X,2,4,X,3,
   1,X,3,4,X,X,
   X,X,X,X,X,3,
   X,3,X,3,X,X,
]);



Minesweeper: Constraints

% game[1..n, 1..n]: the given hints
% mines[1..n, 1..n]: 0/1 where 1 represent a bomb
% X: -1 represents the unknown
constraint
  forall(i in 1..r, j in 1..c) (
    % If the cell contains a hint
    if game[i,j] > X then
      % the number in the hint is the number
      % of all the surrounded bombs
      game[i,j] = sum(a,b in {-1,0,1} where 
                                        i+a in 1..r /\
                                        j+b in 1..c /\
                                        (a != 0 \/ b != 0)
                      ) (mines[i+a,j+b])

      /\ % if a hint, then it can't be a bomb
      mines[i,j] = 0

    endif

  );



Minesweeper: Solution

  ..2.3.
  2.....
  ..24.3
  1.34..
  .....3
  .3.3..

  100001  % 1: Bomb, 0: no bomb
  010110
  000010
  000010
  011100
  100011



Magic squares: solution for 15x15 (0.7s with Gecode)

 107   55  213  186   21  140  171  147  114  204   80   49   81   30   97 
  57   73   44  126   88  154   12   28   35  225  104  200  185  166  198 
 144  224   90  141  219  153  212  170  217   14   17    3   11   46   34 
 207   60  158  211  134   45  129  161   61   65  184  102   95   19   64 
  31  210  117  190  111  131   75  105    4  223  127  115  146   86   24 
 193   23  139  125  197  196   50   29  222   62   32  214  179    8   26 
 172  167  175   40   59  176  128    9  165  188  178   37   77  122    2 
 206   74   13   84  174  116  162    6  203   71  132   83  218  110   43 
 112   91   48   87  163  157   56  143  180   47  138  195  135   67   76 
   7  216   53  189   89  191  106  183   78   68  164   79   22   41  209 
  70  208   98   93   96   20   16  169    5  159   42  155  182  181  201 
 103   94  160  168  149   99  123  151  100   15   66   25   85  221  136 
 119   38  187    1   69   51  192  101  121  142  124  173   33  194  150 
  58  152   52   18   54   39  145  156  108  120  177   63  133  205  215 
 109   10  148   36   72   27  118  137   82   92  130  202  113  199  220 



Furniture moving: Solution for minimize num_persons

% One optimal solution of many
num_persons: 3
resources  : [3, 1, 3, 2]
start_times: [70, 23, 55, 40]
durations  : [30, 10, 15, 15]
end_times  : [100, 33, 70, 55]
end_time   :  100
----------
==========

At least 3 people are needed.
- first start time: 23 !
- end_time: 100 !

Can we do better? 
a) First start time = 0
b) Better end_time?



Multi-objective
 In many applications there can be more than one 

objective, such as
- minimize the resources AND
- minimize the end time
This is called multi-objective.

 Alas, MiniZinc does not supports this directly
 One approach is to combine different objectives



XKCD problem #287
subset sum



XKCD #287
From http://xkcd.com/287



XKCD #287: Problem
P: We'd like exactly $15.05 worth of appetizers, 
please.

Waiter: ... exactly? Ummm.. 

P: Here'm these papers on the Knapsack problem 
might help you out

Waiter: Listen, I have six other tables to get 
to - 

P: ... as fast as possible, of course. Want 
something on Traveling Salesman?



XKCD #287
Appetizers

Mixed Fruit       2.15

French Fries      2.75

Side Salad        3.35

Hot Wings         3.55

Mozarella Sticks  4.20

Sampler Plate     5.80

Since we are using finite domain, 
we multiply all values with 100: 
215, 275, 335, 355, 420, 580.

And the total 15.05: 1505



Subset sum
 This is actually a subset sum problem (not 

Traveling Salesperson Problem, TSP)
 Given a list of values and a target, find all the 

values that sums to target.
 Subset sum is NP complete, i.e. there’s no 

general algorithm that can solve arbitrary 
problems in polynomial time.
Which does not mean that it’s impossible to solve 
some of these problems, even large problems.



XKCD #287: Model

% parameters
int: num_appetizers;
array[1..num_appetizers] of int: price;
int: total;

% decision variables
array[1..num_appetizers] of var 0..100000: x; % items of each dish

constraint total = sum(i in 1..num_appetizers) (x[i]*price[i]);

solve satisfy;

% data
num_appetizers = 6;
% Multiply by 100 → integers
price = [215, 275, 335, 355, 420, 580]; 
total = 1505; 



XKCD #287: Output

x = [7, 0, 0, 0, 0, 0];
----------
x = [1, 0, 0, 2, 0, 1];
----------
==========



XKCD problem #287
subset sum + optimization



Minimize number of dishes
 Here is a variant of the original problem
 Minimize the number of dishes



XKCD #287: Model minimizing the number of dishes

int: num_appetizers;
array[1..num_appetizers] of int: price;
int: total;

array[1..num_appetizers] of var 0..100000: x; % items of each dish
var int: z = sum(x); % sum of the number of dishes

solve minimize z;

constraint total = sum(i in 1..num_prices) (x[i]*price[i]);

num_appetizers = 6;
price = [215, 275, 335, 355, 420, 580]; % Multiply by 100 → integers
total = 1505;

output [“z: \(z)\nx: \(x)\n”];



XKCD #287: Model minimizing the number of dishes, output

x: [1, 0, 0, 2, 0, 1]
z: 4
----------
==========

% With the ‘fancy’ output
z: 4
Mixed Fruit   : 1 ($2.15)
Hot Wings     : 2 ($7.10)
Sampler Plate : 1 ($5.80)
----------
==========



XKCD #287: Fancy output

% …
array[1..num_appetizers] of string: name;
% …

name = ["Mixed Fruit","French Fries","Side Salad",
        "Hot Wings","Mozarella Sticks","Sampler Plate"];
output[
  if fix(x[i]) > 0 then
    name[i] ++ "\t: \(x[i]) ($" ++ show_float(3,2,x[i]*price[i]/100) ++ ")\n"
  endif
  | i in 1..num_appetizers      
];



XKCD #287: Fancy output

Mixed Fruit   : 7 ($15.05)
----------
Mixed Fruit   : 1 ($2.15)
Hot Wings     : 2 ($7.10)
Sampler Plate : 1 ($5.80)
----------
==========



Monks and doors
Reification



Reification
“Reasoning” about constraints/boolean variables

 Implication: constraint1 → constraint2
 Equivalence: constraint1 ↔ constraint2
 not
 /\: and
 \/: or
 false: 0, true: 1



Monks and doors
There is a room with four doors and eight monks. One of the doors is an exit. Each 
monk is either telling a lie or the truth. The monks make the following statements:

Monk 1: Door A is the exit.

Monk 2: At least one of the doors B and C is the exit.

Monk 3: Monk 1 and Monk 2 are telling the truth.

Monk 4: Doors A and B are both exits.

Monk 5: Doors A and B are both exits.

Monk 6: Either Monk 4 or Monk 5 is telling the truth.

Monk 7: If Monk 3 is telling the truth, so is Monk 6.

Monk 8: If Monk 7 and Monk 8 are telling the truth, so is Monk 1.

Which door is an exit and what monk(s) are telling the truth?



Monks and doors: Parameters and decision variables

enum doors = {A,B,C,D};
int: num_monks = 8;
% Decision variables
array[doors] of var bool: Door;
array[1..num_monks] of var bool: M;

solve satisfy;
 



Monks and doors: Constraints (1/2)

Constraint

  % Monk 1: Door A is the exit.
  (M[1] <-> Door[A]) /\

  % Monk 2: At least one of the doors B and C is the exit.
  (M[2] <-> (Door[B] \/ Door[C]) /\

  % Monk 3: Monk 1 and Monk 2 are telling the truth.
  (M[3] <-> (M[1] /\ M[2])) /\

  % Monk 4: Doors A and B are both exits.
  (M[4] <-> (Door[A] /\ Door[B])) /\

  % Monk 5: Doors A and C are both exits.
  (M[5] <-> (Door[A] /\ Door[C])).

 



Monks and doors: Constraints (2/2)

constraint
  
  % Monk 6: Either Monk 4 or Monk 5 is telling the truth.
  (M[6] <-> (M[4] \/ M[5])) /\

  % Monk 7: If Monk 3 is telling the truth, so is Monk 6.
  (M[7] <-> (M[3] -> M[6])) /\

  % Monk 8: If Monk 7 and Monk 8 are telling the truth, so is Monk 1.
  (M[8] <-> ((M[7] /\ M[8]) -> M[1])) /\
  
  % Exactly one door is an exit.
  sum(Door) = 1;

 



Monks and doors: Solution

door:  A     B      C      D
      [true, false, false, false]
monk: 1      2      3      4      5      6      7     8
      [true, false, false, false, false, false, true, true]
----------
==========

Door A the exist door.
Monks 1, 7, and 8 are telling the truth.
 



Broken weights
Bachet’s weighing problem



Broken weights
 A merchant had a forty pound measuring weight that 

broke into four pieces as the result of a fall. When the 
pieces were subsequently weighed, it was found that the 
weight of each piece was a whole number of pounds and 
that the four pieces could be used to weigh every 
integral weight between 1 and 40 pounds. What were 
the weights of the pieces?

(Bachet, 1612)
 Assume a balance scale

with two pans.

Source: Wikipedia



Broken weights
 In short: Using 4 weights that sum to 40, how can 

we measure each value 1..40 using a balance 
scale?

 What are the parameters?
 What are the decision variables and domains?
 How to represent the balance scale?
 What are the constraints?



Broken weights: Parameters, decision variables

int: n = 4;                        % the number of different weights
int: m = 40;                       % original/total weight

array[1..n] of var 1..m: weights;  % the weights
% The combinations:
% -1: left side, 1: right side, 0: not used
array[1..m, 1..n] of var -1..1: x;

solve satisfy;



Broken weights: Constraints

constraint
  sum(weights) = m

  /\ % Ensure that all weights from 1 to 40 (m) can be made.
  forall(w in 1..m) (
    sum([x[w,i]*weights[i] | i in 1..n]) = w
  )

  % symmetry breaking
  /\ increasing(weights);



Broken weights: Solution

W:    1   3   9   27   % The weights
 1:   1   0   0   0
 2:  -1   1   0   0    % 1 pound in left, 3 pound in right: 3 – 1 = 2
 3:   0   1   0   0
 4:   1   1   0   0
 5:  -1  -1   1   0
 6:   0  -1   1   0
 7:   1  -1   1   0
 8:  -1   0   1   0
 9:   0   0   1   0
...
32:  -1  -1   1   1
33:   0  -1   1   1    % 3 in left, 9 and 27 in right: 27+9-3=33
34:   1  -1   1   1
35:  -1   0   1   1
36:   0   0   1   1
37:   1   0   1   1
38:  -1   1   1   1
39:   0   1   1   1
40:   1   1   1   1
----------
==========



Zebra puzzle 
“Einstein puzzle type”

Predicates



Zebra puzzle
 1. There are five houses, each of a different color and 

inhabited by men of different nationalities, with different 
pets, drinks, and cigarettes.

 2. The Englishman lives in the red house.
 3. The Spaniard owns the dog.
 4. Coffee is drunk in the green house.
 ...
 15. The Norwegian lives next to the blue house.
 Who drinks water? And who owns the zebra?



Zebra puzzle: Full problem statement

 1. There are five houses, each of a different color and inhabited by
    men of different nationalities, with different pets, drinks,
    and cigarettes.
 2. The Englishman lives in the red house.
 3. The Spaniard owns the dog.
 4. Coffee is drunk in the green house.
 5. The Ukrainian drinks tea.
 6. The green house is immediately to the right of the ivory house.
 7. The Old Gold smoker owns snails.
 8. Kools are smoked in the yellow house.
 9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house on the left.
11. The man who smokes Chesterfields lives in the house next to the
    man with the fox.
12. Kools are smoked in the house next to the house where the horse is

 kept.
13. The Lucky Strike smoker drinks orange juice.
14. The Japanese smoke Parliaments.
15. The Norwegian lives next to the blue house.
NOW, who drinks water? And who owns the zebra?



Zebra puzzle: The setup, including helper predicates

enum Nationalities= {English,Spanish,Ukrainian,Norwegian,Japanese};
enum Colours      = {Red,Green,Ivory,Yellow,Blue};
enum Animals      = {Dog,Fox,Horse,Zebra,Snails};
enum Drinks       = {Coffee,Tea,Milk,OrangeJuice,Water};
enum Cigarettes   = {OldGold,Kools,Chesterfields,LuckyStrike,Parliaments};
set of int: Houses= 1..5;

array[Nationalities] of var Houses: nation;
array[Colours] of var Houses: colour;
array[Animals] of var Houses: animal;
array[Drinks] of var Houses: drink;
array[Cigarettes] of var Houses: smoke;

% Helper predicates
predicate nextto(var Houses:h1, var Houses:h2) = 
       h1 == h2 + 1 \/ h2 == h1 + 1; % or abs(h1-h2) = 1
predicate rightof(var Houses:h1, var Houses:h2) = h1 == h2 + 1;
predicate middle(var Houses:h) = h == 3;
predicate left(var Houses:h) = h = 1;



Zebra puzzle: Constraints (full)

constraint
all_different(nation) /\ all_different(colour) /\
all_different(animal) /\ all_different(drink) /\
all_different(smoke) /\
nation[English] = colour[Red] /\ % 2
nation[Spanish] = animal[Dog] /\ % 3
drink[Coffee] = colour[Green] /\ % 4

   nation[Ukrainian] = drink[Tea] /\ % 5
   rightof(colour[Green], colour[Ivory]) /\ % 6 
   smoke[OldGold] = animal[Snails] /\ % 7
   smoke[Kools] = colour[Yellow] /\ % 8
   middle(drink[Milk]) /\ % 9
   left(nation[Norwegian]) /\ % 10
   nextto(smoke[Chesterfields], animal[Fox]) /\ % 11
   nextto(smoke[Kools], animal[Horse]) /\ % 12
   smoke[LuckyStrike] = drink[OrangeJuice] /\ % 13
   nation[Japanese] = smoke[Parliaments] /\ % 14
   nextto(nation[Norwegian], colour[Blue]); % 15

solve satisfy;



Zebra puzzle: Constraints (selected)

constraint 
    % ...
    % 2. The Englishman lives in the red house. 
    nation[English] = colour[Red] /\
    % ...

    % 6. The green house is immediately to the right 
    % of the ivory house. 
    rightof(colour[Green], colour[Ivory]) /\ 
    % ...

    % 9. Milk is drunk in the middle house. 
    middle(drink[Milk]) /\ 
    % ...

    % 10. The Norwegian lives in the first house on the left.
    left(nation[Norwegian]) /\ 

    % ...



Zebra: solution

nation=[English:3, Spanish:4, Ukrainian:2, Norwegian:1, Japanese:5];
colour=[Red:3, Green:5, Ivory:4, Yellow:1, Blue:2];
animal=[Dog:4, Fox:1, Horse:2, Zebra:5, Snails:3];
Drink =[Coffee:5, Tea:2, Milk: 3, OrangeJuice: 4, Water:1];
Smoke =[OldGold:3, Kools:1, Chesterfields:2, LuckyStrike:4, Parliaments:5];
----------
==========

% The Norwegian drinks water: Drink Water = 1 → Nation 1 = Norwegian
% The Japanese owns the Zebra: Animal Zebra = 5 → Nation 5 = Japanese



Langford’s number problem
Element, Symmetry breaking



Langford’s number problem
Langford's number problem (CSP lib problem 24)

http://www.csplib.org/prob/prob024/

http://www.dialectrix.com/langford.html
 Arrange 2 sets of positive integers 1..k to a sequence, such 

that, following the first occurence of an integer i,  each 
subsequent occurrence of i, appears i+1 indices later than the 
last.  
For example, for k=4, a solution would be   41312432

 K=12: 1,9,1,8,3,12,10,11,3,4,5,9,8,7,4,6,5,10,12,11,2,7,6,2
 Only for k mod 4 == 0 or k mod 4 == 3



Langford’s number problem
Two decision variables:

 Positions:  for each index in 1..k: each subsequent 
occurrence of i, appears i+1 indices later than the 
last

 Solution: Place the (two) i’s in the assigned 
positions



Langford’s problem: The model

int: k = 4;
set of int: pos_domain = 1..2*k;          % domain of the positions
array[pos_domain] of var pos_domain: pos; % the positions
array[pos_domain] of var 1..k: sol;       % the solution

constraint
  forall(i in 1..k) (
    % positions:
    % “each subsequent occurrence of i, appears i+1 indices 
    % later than the last”
    pos[i+k] = pos[i] + i+1 /\ 
    all_different(pos)      /\

    % solution: the values in pos[i] and pos[k+i] should both 
    % have the value i
    sol[pos[i]]   = i       /\ % element
    sol[pos[k+i]] = i          % element
  )  
  % symmetry breaking
  /\ sol[1] < sol[2*k]
;



Langford’s problem: Element

% ...
constraint
  forall(i in 1..k) (
    pos[i+k] = pos[i] + i+1 /\
    sol[pos[i]]   = i       /\ % element
    sol[pos[k+i]] = i          % element 
  )  
  % ...
;

Ensure that for the two positions pos[i] and pos[k+i] (with k indices 
apart), the solution (sol) in these positions should both have the 
value of i.



Langford’s problem: Solution (k=4)

position: [5, 1, 2, 3, 7, 4, 6, 8]
solution: [2, 3, 4, 2, 1, 3, 1, 4]
----------
==========



Langford’s problem: Solution (k=4)

%          1  2  3  4  1  2  3  4
position: [5, 1, 2, 3, 7, 4, 6, 8]
solution: [2, 3, 4, 2, 1, 3, 1, 4]
----------
==========

pos[1] = 5 → sol[5] = 1
pos[2] = 1 → sol[1] = 2
pos[3] = 2 → sol[2] = 3
pos[4] = 3 → sol[3] = 4

% pos[i+k] = pos[i] + i+1
pos[1+4=5] = 7 (5+1+1) → sol[7] = 1
pos[2+4=6] = 4 (1+2+1) → sol[4] = 2
pos[3+4=7] = 6 (2+3+1) → sol[6] = 3
pos[4+4=8] = 8 (3+4+1) → sol[8] = 4

% sol[pos[i]]   = i
% sol[pos[i+k]] = i



Element constraint
 One of the most common and powerful constraint
 Z = X[Y]

where X is an array of decision variables , Y and Z 
are decision variables.

 Given X and Z → Y  (reversibility)
 Given pairs of Zs and Ys → X
 2D arrays: V = X[Y,Z]
 In other CP systems: element(Y,X,Z)



Symmetry breaking
 Pruning symmetric solutions can speed up the solve time.
 For n=4, there are two symmetric solutions and we 

remove one of them

sol[1] < sol[2*k]
 solution: [2, 3, 4, 2, 1, 3, 1, 4] 

solution: [4, 1, 3, 1, 2, 4, 3, 2]  This is removed
 Global constraints for symmetry breaking: increasing, 

decreasing, lex_lt, lex2, all_different_except_0, 
value_precede_chain



Langford’s problem
generalized



Langford: generalized
Langford's number problem (CSP lib problem 24)

http://www.csplib.org/prob/prob024/

http://www.dialectrix.com/langford.html

Generalized version:

The problem generalizes to the L(k,n) problem, which is to arrange k sets of numbers 1 to n, 

so that each appearance of the number m is m numbers on from the last. 

For example, the L(3,9) problem is to arrange 3 sets of the numbers 1 to 9 so that the 

first two 1’s and the second two 1’s appear one number apart, the first two 2’s and the 

second two 2’s appear two numbers apart, etc.

For L(3,n) there is only a solution if n mod 9 = (0,1,8)

Example: L(3,9): 

1, 9, 1, 2, 1, 8, 2, 4, 6, 2, 7, 9, 4, 5, 8, 6, 3, 4, 7, 5, 3, 9, 6, 8, 3, 5, 7

http://www.csplib.org/prob/prob024/
http://www.dialectrix.com/langford.html


Langford problem - generalized: Model

int: n; % 1..n: the numbers to place
int: k; % number of occurrences of each number
array[1..k*n] of var 1..n: sol;   % solution
array[1..k*n] of var 1..k*n: pos; % positions

solve satisfy;

constraint
  all_different(pos) /\
  forall(i in 1..n) (
    let {
      % temporary decision variable: the possible index 
      var 1..k*n - ((k-1)*i): j; 
    } in 
    forall(c in 0..k-1) (
      sol[j+(i*c)+c] = i /\
      pos[(i-1)*k+c+1] = j+(i*c)+c
    )
  )
  /\ global_cardinality(sol, [i | i in 1..n], [k  | i in 1..n])
  /\ sol[1] < sol[k*n];

 



Hidato grid puzzle
Temporary decision variables



Hidato grid puzzle
 http://www.hidato.com/
 Given a grid of Rows x Cols with some pre-filled 

numbers, including 1 and Rows*Cols (first and 
last).

 Place all numbers 1..Rows*Cols such that 
adjacent numbers touch each other horizontally, 
vertically, or diagonally.

http://www.hidato.com/


Hidato: Problem instance (0s are the unknowns)

% http://www.hidato.com/ Problem 188 (Genius)
r = 12;
puzzle = array2d(1..r, 1..c,
 [
     0,  0,134,  2,  4,  0,  0,  0,  0,  0,  0,  0,
   136,  0,  0,  1,  0,  5,  6, 10,115,106,  0,  0,
   139,  0,  0,124,  0,122,117,  0,  0,107,  0,  0,
     0,131,126,  0,123,  0,  0, 12,  0,  0,  0,103,
     0,  0,144,  0,  0,  0,  0,  0, 14,  0, 99,101,
     0,  0,129,  0, 23, 21,  0, 16, 65, 97, 96,  0,
    30, 29, 25,  0,  0, 19,  0,  0,  0, 66, 94,  0,
    32,  0,  0, 27, 57, 59, 60,  0,  0,  0,  0, 92,
     0, 40, 42,  0, 56, 58,  0,  0, 72,  0,  0,  0,
     0, 39,  0,  0,  0,  0, 78, 73, 71, 85, 69,  0,
    35,  0,  0, 46, 53,  0,  0,  0, 80, 84,  0,  0,
    36,  0, 45,  0,  0, 52, 51,  0,  0,  0,  0, 88,
 ]);

http://www.hidato.com/


Hidato: Model

% ...
constraint
  % all distinct integers from 1..r*c
  all_different(x) /\

  % place the hints
  forall(i in 1..r, j in 1..c) (
     if puzzle[i,j] > 0 then x[i,j] = puzzle[i,j] endif
  ) /\

  % identify all k’s (1..r*c)
  forall(k in 1..r*c-1) (
     let {
        % temporary decision variables
        var 1..r: i, var 1..c: j, var {-1,0,1}: a, var {-1,0,1}: b
     } in
     k = x[i, j] /\ % fix this k
     i+a >= 1 /\ j+b >=  1 /\ i+a <= r /\ j+b <= c % inside the grid
     /\ not(a = 0 /\ b = 0) /\ 
     k + 1 = x[i+a, j+b] % find the next k
  )



Hidato: Solution

137 135 134   2   4   7   8   9 114 113 112 111
136 138 133   1   3   5   6  10 115 106 105 110
139 132 125 124 121 122 117 116  11 107 109 104
140 131 126 127 123 120 118  12  13 108 102 103
141 130 144 128  22 119  17  15  14  98  99 101
142 143 129  24  23  21  18  16  65  97  96 100
 30  29  25  26  20  19  61  62  64  66  94  95
 32  31  28  27  57  59  60  75  63  67  93  92
 33  40  42  55  56  58  76  74  72  70  68  91
 34  39  41  43  54  77  78  73  71  85  69  90
 35  38  44  46  53  49  50  79  80  84  86  89
 36  37  45  47  48  52  51  81  82  83  87  88
 



Traveling Salesperson Problem (TSP)
Circuit constraint



TSP
 Basic problem description (from Wikipedia):

”””
Given a list of cities and the distances between 
each pair of cities, what is the shortest possible 
route that visits each city exactly once and 
returns to the origin city?
”””

 There are many variants on this problem, but let’s 
keep it simple.



Global constraint circuit 
 Given a list of integers (representing the cities), the circuit constraint shows what 

city (node) should be visited next.
 For 4 cities the circuit 

   [2,4,1,3]

means
  City 1 → City 2
  City 2 → City 4
  City 3 → City 1
  City 4 → City 3

 The constraint assumes that we start at city 1
 The path is thus 1 → 2 → 4 → 3 → 1

Note: The circuit constraint does not show the path directly.



TSP: Data (distance between the cities)

n = 7;
distances = array2d(1..n, 1..n,
[
  0, 4, 8,10, 7,14,15,
  4, 0, 7, 7,10,12, 5,
  8, 7, 0, 4, 6, 8,10,
 10, 7, 4, 0, 2, 5, 8,
  7,10, 6, 2, 0, 6, 7,
 14,12, 8, 5, 6, 0, 5,
 15, 5,10, 8, 7, 5, 0,
]);

% From Ulf Nilsson 
% “Transparencies for the course TDDD08 Logic Programming”

 



TSP: The setup

int: n; % number of cities

array[1..n, 1..n] of int: distances;      % distance matrix
% domains for d, the distances of the travelled path
int: min_val = min([distances[i,j] | i,j in 1..n where distances[i,j] > 0]);
int: max_val = max([distances[i,j] | i,j in 1..n]);

% decision variabls
array[1..n] of var 1..n: x;             % the circuit
array[1..n] of var 1..n: p;             % the path
array[1..n] of var min_val..max_val: d; % the distances for the path
var int: distance = sum(d);             % total distance (to be minimized)

solve minimize distance;

 



circuit_path constraint
 Since the circuit constraint does not show the path, 

let’s write a decomposition for converting a circuit to 
a path.

 circuit_path(circuit, path)
Converts the information in circuit into a path.

 The path [2,4,3,1] represents the path
1 → 2 → 4 → 3 → 1

 We always assume that city 1 is visted first (and 
last).



TSP: The circuit_path(circuit,path) decomposition

%
% circuit_path(x,p)
% Ensures that x is a circuit and that p is a path for that circuit
%
predicate circuit_path(array[int] of var int: x, 
                       array[int] of var int: p) =
  let {
    int: len = length(x)
  } in
  circuit(x) /\
  all_different(p) /\ 

  % always starts the path at city 1
  p[1] = x[1] /\ % start at city 1
  p[len] = 1  /\ % back to city 1
  forall(i in 2..len) (
    p[i] = x[p[i-1]]  % connection between city i and the next city 
  )
; 

 



TSP: Constraints

constraint
    circuit_path(x,p)
    /\ 
    % d[i] is the distance for the ith visited city:
    % the distance between the city i and the next city x[i]
    % (again, the element constraint is used)
    forall(i in 1..n) (
      distances[i,x[i]] = d[i]
    )
;



TSP: Solution

%   1  2  3  4  5  6  7
x: [2, 7, 1, 3, 4, 5, 6]  % The circuit
p: [2, 7, 6, 5, 4, 3, 1]  % The path
dist: 34

The path is thus:
1 → 2
2 → 7
7 → 6
6 → 5
5 → 4
4 → 3
3 → 1   (back to city 1)



Code golfing



Code golfing
From http://codegolf.stackexchange.com/questions/8429/can-you-golf-golf/

You are required to generate a random 18-hole golf course.

Example output:

[3 4 3 5 5 4 4 4 5 3 3 4 4 3 4 5 5 4]

Rules:

- Your program must output a list of hole lengths for exactly 18 holes

- Each hole must have a length of 3, 4 or 5

- The hole lengths must add up to 72 for the entire course

- Your program must be able to produce every possible hole configuration 
with  some non-zero-probability (the probabilities of each configuration 
need not be  equal, but feel free to claim extra kudos if this is the case)



Code golfing

% The complete model:
array[1..18]of var 3..5:x;constraint sum(x)=72

Run with
$ minizinc 18_hole_golf.mzn -a -s 
x = [3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5];
----------
x = [3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5];
----------
x = [3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5];
----------
x = [3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5];
----------
x = [3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5];
----------
...

% Number of solutions: 44152809
% Time               : 23min01.36s



Smullyan’s Knights and Knaves
reification



Knights and Knaves
 From Raymond Smullyan’s excellent

“What is the name of this book?”
 A knight always tells the truth
 A knave always lies
 “Liar paradox”:

- A knave cannot say “I’m lying” (‘cause it’s true)
- A knight cannot say “I’m lying” (‘cause it’s false)



Knights and Knaves: #26
 Problem #26:

B says: A says he is a knave
C says: B is a knave
What are B and C?



Knights and Knaves: Problem #26 - model

% a knight alway tells the truth
% a knave always lies
enum P = {knight,knave};
var P: A; var P: B; var P: C;

% says(kind of person, what the person say: a boolean)
predicate says(var P: kind, var bool: says) =
   (kind = knight <-> says = true )
   /\
   (kind = knave  <-> says = false )
;

solve satisfy;
constraint
    % B: A says he is a knave
    says(B, says(A, A = knave))
    /\
    % C: B is a knave
    says(C, B = knave)
;



Knights and Knaves: Problem #26 - solution

Problem #26:
B: A says he is a knave
C: B is a knave

There are two solutions:
p: [knave, knave, knight]
p: [knight, knave, knight]

Which means that
A is unknown (either a knave or knight)
B is a knave (lying)
C is a knight (telling the truth)

Manual reasoning: 
* B is lying since it’s impossible that A says he’s a knave 
  → B is a knave
* And since B is lying (is a knave)
  then C is telling the truth 
  → C is a knight.



Knights and Knaves: Alternative definition using \/ and /\

Instead of <-> (and /\) we can use /\ (and \/).

predicate says(var P: kind, var bool: says) =
   (kind = knight /\ says = true )
   \/
   (kind = knave  /\ says = false )
;



N-queens problem
different encodings



N-queens problem
 Place N queens on a NxN chess board such that 

no queens attack each other.
 Here we see some different encodings:

- simple version
- using all_different
- using a 0/1 grid

 For the first two, an 1d array is used representing 
the N rows.



N-queens problem (n=8)
6 4 7 1 3 5 2 8 

. . . . . Q . .     row 1, col 6

. . . Q . . . .     row 2  col 4

. . . . . . Q .     row 3  col 7

Q . . . . . . .     row 4  col 1

. . Q . . . . .     row 5  col 3

. . . . Q . . .     row 6  col 5

. Q . . . . . .     row 7  col 2

. . . . . . . Q     row 8  col 8



Different encodings
 A problem can often be modeled in different ways 

using different views of representations, etc.
 The best/good model might depend on the 

strengths of the used solver.
 For SAT/MIP solvers a model using 0/1 (boolean) 

variables can be quite fast, but not always



N-queens: Simple model

int: n; 

array [1..n] of var 1..n: q;
constraint
  forall (i in 1..n, j in i+1..n) (
    q[i]     != q[j]     /\ % different rows
    q[i] + i != q[j] + j /\ % different / diagonals
    q[i] - i != q[j] – j    % different \ diagonals
  );

solve satisfy;



N-queens: Using all_different

int: n; 

array [1..n] of var 1..n: q;
constraint
  % Rows are different
  all_different(q) /\

  % "/" diagonals are different
  all_different([q[i]+i | i in 1..n]) /\

  % "\" diagonals are different
  all_different([q[i]-i | i in 1..n])
;

solve satisfy;



N-queens: 0/1 variables on a NxN grid

int: n;
array[1..n,1..n] of var 0..1: q;
var int: obj = sum(i,j in 1..n) (q[i,j]);
constraint
   % one queen per row 
   forall(i in 1..n) ( sum(j in 1..n) (x[i,j]) = 1) /\

   % one queen per column 
   forall(j in 1..n) ( sum(i in 1..n) (x[i,j]) = 1) /\

   % at most one queen can be placed in each "/"-diagonal 
   forall(k in 2-n..n-2) (
       sum(i,j in 1..n where i-j == k) (x[i,j]) <= 1
   ) /\
   % at most one queen can be placed in each "\"-diagonal 
   forall(k in 3..n+n-1) (
       sum(i,j in 1..n where i+j == k) (x[i,j]) <= 1
   )
  /\ obj = n;



N-queens: Number of solutions

N   Number of solutions
---------------------------------
 0          1
 1          1
 2          0
 3          0
 4          2
 5         10
 6          4
 7         40
 8         92
 9        352
10        724
11       2680
12      14200
13      73712
14     365596
15    2279184

[1,1,0,0,2,10,4,40,92,352,724,2680,14200,73712,365596,2279184]



Number of solutions: OEIS
 Online Encyclopedia of Integer Sequences: https://oeis.org/

 https://oeis.org/A000170
”””
A000170 Number of ways of placing n nonattacking queens on an n 
X n board.
1, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596, 
2279184, 14772512, 95815104, 666090624, 4968057848, 
39029188884, 314666222712, 2691008701644, 24233937684440, 
227514171973736, 2207893435808352, 22317699616364044, 
234907967154122528 
”””

https://oeis.org/A000170


Magic sequence: Is there a pattern in the solutions?

 N  Solution
 --------------------------------------------
 4: [ 1,2,1,0]
 5: [ 2,1,2,0,0]
 6: no solution
 7: [ 3,2,1,1,0,0,0]
 8: [ 4,2,1,0,1,0,0,0]
 9: [ 5,2,1,0,0,1,0,0,0]
10: [ 6,2,1,0,0,0,1,0,0,0]
11: [ 7,2,1,0,0,0,0,1,0,0,0]
12: [ 8,2,1,0,0,0,0,0,1,0,0,0]
13: [ 9,2,1,0,0,0,0,0,0,1,0,0,0]
14: [10,2,1,0,0,0,0,0,0,0,1,0,0,0]
15: [11,2,1,0,0,0,0,0,0,0,0,1,0,0,0]
16: [12,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0]
17: [13,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
18: [14,2,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
19: [15,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]



Magic sequence: Is there a pattern? (Yes, at least for N>=7)

 N  Solution
 --------------------------------------------
 4: [ 1,2,1,0]
 5: [ 2,1,2,0,0]
 6: no solution
 7: [ 3,2,1,1,0,0,0]
 8: [ 4,2,1,0,1,0,0,0]
 9: [ 5,2,1,0,0,1,0,0,0]
10: [ 6,2,1,0,0,0,1,0,0,0]
11: [ 7,2,1,0,0,0,0,1,0,0,0]
12: [ 8,2,1,0,0,0,0,0,1,0,0,0]
13: [ 9,2,1,0,0,0,0,0,0,1,0,0,0]
14: [10,2,1,0,0,0,0,0,0,0,1,0,0,0]
15: [11,2,1,0,0,0,0,0,0,0,0,1,0,0,0]
16: [12,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0]
17: [13,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
18: [14,2,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
19: [15,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]



Magic sequence: Non CP algorithm in Python3, for n >= 7

def magic_sequence(n):
    “””
    This works for n>=7.
    “””
    if n < 7:
        return []
    else:
        s = [0]*n
        s[0] = n-4
        s[1] = 2
        s[2] = 1
        s[n-4] = 1
        return s

print(magic_sequence(10))   # [6, 2, 1, 0, 0, 0, 1, 0, 0, 0] 

For n=10 000 this program takes 0.04s. (Gecode takes 31.78s.)

Sometimes CP is not the fastest approach;  but it’s often great for exploring problems.
The Python program was written after I played with the CP model.



Thirty bottles



Thirty bottles
 From Alcuins, via Paul Vaderlind "Klassisk Nöjesmatematik" 

(“Classical recreational mathematics”), 2003, page 38.
 A man died and left 30 bottles to his 3 sons. 10 bottles 

was filled with oil, 10 was half full with oil, and 10 was 
empty. The wish of the man was that all the sons should 
get the same amount of bottles and the same 
amount of oil. How to distribute bottles and oil in a fair 
way if it's not allowed to pour oil from one bottle to 
another.

 How many solutions are there?



30 bottles: Parameters and decision variables

% parameters
int: n = 3;                         % number of bottle types

% how filled are the bottle types (the ratio)
%    [filled, half filled, empty] = [1,1/2,0]
array[1..n] of int: t = [2,1,0];    % converted to integers

int: b = [10,10,10];                % number of bottles of each type
int: num_sons = 3;                  % number of sons

% derived parameters
int: tot_oil = sum([t[i]*b[i] | i in 1..n]); % total amount of oil
int: tot_bottles = sum(b);                   % total number of bottles

% decision variables
% How many bottles of each type should be distributed to each son
array[1..num_sons,1..n] of var 0..tot_oil: x;



30 bottles: Model

constraint
  forall(s in 1..num_sons) (
    % total number of bottles per son (row)
    % (convert to multiplication)
    num_sons*sum(x[s,..] ) = tot_bottles /\
    
    % total amount of oil per son
    num_sons*sum([x[s,j]*t[j] | j in 1..n]) = tot_oil
    
    /\ % symmetry breaking (lexicographic order of rows)
    if s < num_sons then
      lex_lesseq(x[s,..],x[s+1,..])
    endif
  )
  /\ 
  % check the the number of bottles of each type 
  % i.e. the columns in the matrix.
  forall(j in 1..n) (
    sum(x[..,j]) = b[j]
  ); 



30 bottles: First solution

[3, 4, 3]  = 3+4+3 = 10 bottles     First son
[3, 4, 3]  = 3+3+3 = 10 bottles     Second son
[4, 2, 4]  = 4+2+4 = 10 bottles     Third son
---------
10 10 10  sums of columns (=number of bottles of each type)
         

How many liter oil per son?

We must use the original ratios [1,1/2,0], 
not those in the model ([2,1,0]).

Son 1: [3, 4, 3] 
3*1 + 4/2 + 3*0 = 3 + 2 + 0 = 5 liter oil      

Son 2: [3, 4, 3] 
3*1 + 4/2 + 3*0 = 3 + 2 + 0 = 5 liter oil

Son 3: [4, 2, 4]
4*1 + 2/2 + 4*0 = 4 + 1 + 0 = 5 liter oil



30 bottles: All solutions (i.e. 5 solutions)

[3, 4, 3]
[3, 4, 3]
[4, 2, 4]
----------
[2, 6, 2] 
[4, 2, 4]
[4, 2, 4]
----------
[1, 8, 1]
[4, 2, 4]
[5, 0, 5]
----------
[0, 10, 0]
[5, 0, 5]
[5, 0, 5]
----------
[2, 6, 2]
[3, 4, 3]
[5, 0, 5]
----------
==========

Without symmetry breaking there are 21 solutions.



Thirty bottles, variant
 Paul Vaderlind "Klassisk Nöjesmatematik", 2003, 

page 40 (Problem 15)
 How to distribute 5 full, 8 half-full, and 11 empty 

bottles of wine between three persons if each 
person get the same number of bottles and the 
same amout of wine. Find all solutions.



30 bottles: Problem 15, parameters

% parameters
int: n = 3;                         % number of bottle types
% how filled are the bottle types
array[1..n] of int: t = [2,1,0];
int: b = [5,8,11];                % number of bottles of each type
int: num_sons = 3;                  % number of sons

% … as before



30 bottles: Problem 15, solutions

[1, 4, 3]
[2, 2, 4]
[2, 2, 4]
----------
[1, 4, 3]
[1, 4, 3]
[3, 0, 5]
----------
[0, 6, 2]
[2, 2, 4]
[3, 0, 5]
----------
==========
 



The Paris Marathon puzzle
A logic puzzle



The Paris Marathon puzzle
Dominique, Ignace, Naren, Olivier, Philippe, and Pascal have arrived as the first 
six at the Paris marathon. Reconstruct their arrival order from the following 
information:

a) Olivier has not arrived last

b) Dominique, Pascal and Ignace have arrived before Naren and Olivier

c) Dominique who was third last year has improved this year.

d) Philippe is among the first four.

e) Ignace has arrived neither in second nor third position.

f) Pascal has beaten Naren by three positions.

g) Neither Ignace nor Dominique are on the fourth position.

(From Guéret & Sevaux: “Programmation linéaire”, 2000)



The Paris Marathon: Parameters and decision variables

include "globals.mzn";
% Parameters
int: n = 6;
array[1..n] of string: runners_s =
      ["Dominique", "Ignace", "Naren", "Olivier", "Philippe", "Pascal"];

% Decision variables
var 1..n: Dominique;
var 1..n: Ignace;
var 1..n: Naren;
var 1..n: Olivier;
var 1..n: Philippe;
var 1..n: Pascal;
array[1..n] of var 1..n: runners = 
               [Dominique, Ignace, Naren, Olivier, Philippe, Pascal];

solve satisfy;
 



The Paris Marathon: Constraints 1/2

constraint 
  all_different(runners) /\

  % a: Olivier not last
  Olivier    != n /\

  % b: Dominique, Pascal and Ignace before Naren and Olivier
  Dominique  < Naren /\  
  Dominique  < Olivier /\
  Pascal     < Naren /\  
  Pascal     < Olivier /\
  Ignace     < Naren /\  
  Ignace     < Olivier /\

  % c: Dominique better than third
  Dominique  < 3 /\ 

  % d: Philippe is among the first four
  Philippe   <= 4  /\
  
  % cont...
 



The Paris Marathon: Constraints 2/2

% (cont)

  % e: Ignace neither second nor third
  Ignace     != 2 /\ 
  Ignace     != 3 /\ 

  % f: Pascal three places earlier than Naren
  Pascal + 3 = Naren /\ 

  % g: Neither Ignace nor Dominique on fourth position
  Ignace     != 4 /\
  Dominique  != 4
;

 



The Paris Marathon: Output section

output 
[
  "Runners: \(runners)\n"
]
++
[
 if fix(runners[j]) = i then "Place \(i): \(runners_s[j])\n" endif
  | i in 1..n, j in 1..n
];

 



The Paris Marathon: Solution

[2, 1, 6, 5, 4, 3]
Place 1: "Ignace"
Place 2: "Dominique"
Place 3: "Pascal"
Place 4: "Philippe"
Place 5: "Olivier"
Place 6: "Naren"

%         Dominique Ignace Naren Olivier Philippe Pascal
Runners: [2,        1,     6,    5,      4,       3]

The clues again:
a) Olivier has not arrived last
b) Dominique, Pascal and Ignace have arrived before Naren
   and Olivier
c) Dominique who was third last year has improved this year.
d) Philippe is among the first four.
e) Ignace has arrived neither in second nor third position.
f) Pascal has beaten Naren by three positions.
g) Neither Ignace nor Dominique are on the fourth position.



Labeled dice
Global cardinality count



Labeled dice 
(From Humphrey Dudley via Jim Orlin)

 My daughter Jenn bough a puzzle book, and showed me a 
cute puzzle.  There are 13 words as follows:  BUOY, CAVE, 
CELT, FLUB, FORK, HEMP, JUDY, JUNK, LIMN, QUIP, SWAG, 
VISA, WISH.

 There are 24 different letters that appear in the 13 words.  
The question is:  can one assign the 24 letters to 4 
different cubes so that the four letters of each word 
appears on different cubes.  (There is one letter from each 
word on each cube.)



Labeled dice: The setup

int: n = 4;
int: num_words = 13;

enum letters = {A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,Y};
array[1..num_words, 1..n] of int: words = array2d(1..num_words, 1..n,
  [
   B,U,O,Y,   C,A,V,E,    C,E,L,T,   F,L,U,B,    F,O,R,K,    
   H,E,M,P,   J,U,D,Y,    J,U,N,K,   L,I,M,N,    Q,U,I,P,    
   S,W,A,G,   V,I,S,A,    W,I,S,H
  ]);

% Decision variables: At which die should a letter be placed?
array[1..24] of var 1..n: dice;

solve satisfy;



Labeled dice: Constraints and symmetry breaking

constraint
  % the letters in a word must be on a different die
  forall(i in 1..num_words) (
    alldifferent([dice[words[i,j]] | j in 1..n])
  )
  /\
  % there must be exactly 6 letters of each die
  global_cardinality(dice, [i | i in 1..n], [6 | i in 1..n]);

% There are 24 different solutions.
% This symmetry breaking yields just 1 solution.
constraint
  dice[ 1] < dice[ 7] /\ % first letter of die 1 vs die 2
  dice[ 7] < dice[13] /\ % die 2 vs die 3
  dice[13] < dice[19]    % die 3 vs die 4
;



Labeled dice: Output

{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, Y}
dice:
[1, 2, 4, 2, 2, 4, 2, 1, 2, 1, 2, 1, 3, 4, 1, 4, 1, 3, 4, 3, 3, 3, 3, 4]

die: 1: A H J L O Q 
die: 2: B D E G I K 
die: 3: M R T U V W 
die: 4: C F N P S Y 

BUOY
CAVE 
CELT 
FLUB 
FORK 
HEMP 
JUDY 
JUNK 
LIMN 
QUIP 
SWAG 
VISA 
WISH



Five 5-letter words that share no
common letter



Five words share no letters

 Find five five-letter words that has no letter in common. Get all 
possible solutions.

 From Matt Parker (Stand-Up Maths)
 https://www.youtube.com/watch?v=_-AfhLQfb6w

 Preprocessing:
- sort words (10175 from a word list) and collect anagrams
- convert words to list of integers
- write as a MiniZinc datafile (.dzn)

(→ 5977 anagrams)



Five letter words: Data file (converted from a word list)

num_words=5977;
% The anagrams
words = array2d(1..num_words,1..5,[

1,2,3,5,8,  % abceh: ‘bache’ and ’beach’
1,2,3,5,9,  % abcei: ‘ceibal’
1,2,3,5,12, % abcel: ‘cable’ and ‘caleb’ 
1,2,3,5,16, % abcep: ‘becap’
1,2,3,5,18, % abcer: ‘acerb’,’brace’,’caber’,and ’cabre’  

    …
]);

% Words covered by an anagram
words_s = [
"[bache,beach]", % Words for the first anagram
"[ceiba]",
"[cable,caleb]",
"[becap]",
"[acerb,brace,caber,cabre]",
…
]);



Five letter words: The model

% ...
array[1..num_words,1..n] of int: words; % anagrams as integer arrays
array[1..num_words] of string: words_s; % covered words as strings

array[1..n] of var 1..num_words: x; % The words (index)
array[1..n,1..n] of var 1..26: y; % The individual characters

constraint 
  % The words (anagrams) are distinct and ordered 
  all_different(x) /\
  increasing(x) /\  % symmetry breaking

  % The letters are distinct
  all_different(y) /\

  % Connect the selected word and the characters
  forall(i,j in 1..n) (
    y[i,j] = words[x[i],j]     
  )
;
output [ "\([words_s[fix(x[i])] | i in 1..n])\n"]; 



Five letter words: Solution

["[japyx]", "[bortz]", "[chivw]", "[dunks]", "[flegm]"]
----------
["[knyaz]", "[bumps]", "[chivw]", "[fldxt]", "[jorge]"]
----------
["[japyx]", "[bilks]", "[fconv]", "[zhmud]", "[grewt]"]
----------
["[ampyx]", "[bortz]", "[chivw]", "[fjeld]", "[gunks]"]
----------
["[japyx]", "[bongs]", "[chivw]", "[fremd]", "[klutz]"]
----------
["[swack,wacks]", "[vibex]", "[fjord]", "[glyph]", "[muntz]"]
----------
["[gravy]", "[bumph]", "[jocks]", "[fldxt]", "[winze,wizen]"]
----------
...
["[whank]", "[gumby]", "[crips,crisp,scrip]", "[fldxt]", "[vejoz]"]
----------
...



Five letter words: labeling

 In earlier CP talks, I talked quite much on search 
strategies (a.k.a. labeling): 
first_fail, most_constrained, indomain_split, etc. 

 Nowadays, it’s easier to use “solve satisfy” and just testing 
different solvers, e.g.
- OR-tools CP-SAT (with/without -f + -p <n_threads>)
- Chuffed (with/without -f + -p)
- PicatSAT
- Gecode (with/without -f + -p)
- HiGHs, Geas, etc



Five letter words: labeling
But.

 For this problem, the fastest configuration I’ve 
found is Gecode using
- first_fail, indomain_reverse_split
- p 22 (number of threads)

 Time to show all solutions: 16.8s
(dedicated algos can be quite faster, <1s)



Just forgotten



Just forgotten
 Joe was furious when he forgot one of his bank account numbers. 

He remembered  that it had all the digits 0 to 9 in some order, so he tried the 
following four sets  without success:

9 4 6 2 1 5 7 8 3 0

8 6 0 4 3 9 1 2 5 7 

1 6 4 0 2 9 7 8 5 3

6 8 2 4 3 1 9 0 7 5
 When Joe finally remembered his account number, he realised that 

in each set just four of the digits were in their correct position and 
that, if one knew  that, it was possible to work out his account number. What 
was it? (Enigma puzzle #1517)



Just forgotten: The model

int: rows = 4;
int: cols = 10;
array[1..rows, 1..cols] of 0..9: a;
array[1..cols] of var 0..9: x;
solve satisfy;

constraint all_different(x);

% In each set exactly 4 digits are in the correct position
constraint
   forall(r in 1..rows) (
     sum([x[c] = a[r,c] | c in 1..cols]) = 4
   )
;

a = array2d(1..rows, 1..cols, 
            [9,4,6,2,1,5,7,8,3,0,
             8,6,0,4,3,9,1,2,5,7,
             1,6,4,0,2,9,7,8,5,3,
             6,8,2,4,3,1,9,0,7,5]);



Just forgotten: Solution

x: [9, 6, 2, 4, 3, 1, 7, 8, 5, 0]
----------
==========

“Just four of the digits were in their correct position.”

9 4 6 2 1 5 7 8 3 0
8 6 0 4 3 9 1 2 5 7 
1 6 4 0 2 9 7 8 5 3
6 8 2 4 3 1 9 0 7 5



Just forgotten
Generating instances



Generating instances
 Use CP to generate instances. 
 Add extra constraints to ensure all requirements
 To guarantee a unique solution of the instance, 

we have to check the number of solutions.
This is not supported in MiniZinc.

 Here’s an approach using MiniZinc-Python
https://minizinc-python.readthedocs.io/en/latest/ 



Generating instances
Two steps:

 10 Generate a candidate matrix A
 20 If more than one solution (X) -> goto 10
 30 Print A and X



Generating instances: The model

int: rows = 4;
int: cols = 10;
array[1..rows, 1..cols] of var 0..9: a;
array[1..cols] of var 0..9: x;

solve :: int_search(array1d(a) ++ x,first_fail,indomain_random)
      :: restart_linear(1000) % faster
      satisfy;

constraint
   all_different(x) /\
   forall(r in 1..rows) (
     all_different(a[r,..]) /\
     sum([x[c] = a[r,c] | c in 1..cols]) = 4
   )
   /\ % Each element in x[c] must have some match in a[..,c]
   forall(c in 1..cols) (
      sum([x[c] = a[r,c] | r in 1..rows]) >= 1
   );



Generating instances: MiniZinc-Python program

from minizinc import Instance, Model, Solver
import random

def gen(a=None):
    just_forgotten = Model("./just_forgotten_generate.mzn")
    sol = Solver.lookup("gecode")
    instance = Instance(sol, just_forgotten)
    # Step 1: Generate a candidate matrix a
    if a == None:
        result = instance.solve(random_seed=random.randint(0,1000000))        
        return(result["a"])
    # Check the number of solutions
    instance["a"] = a
    result = instance.solve(nr_solutions=2) # we want only one solution
    num_sols = len(result)
    if num_sols == 1:
        return True, result[0,"x"]
    else:
        return False, ""



Generating instances: MiniZinc-Python

g = 0
while True:
    g += 1
    print("\ngeneration:",g)
    a = gen()
    ret,x = gen(a)
    if ret == True:
        % Output in .dzn format
        print("a = array2d(1..rows, 1..cols,[")
        for i in range(4):
            for j in range(10):
                print(a[i][j],end=", ")
            print()
        print("]);")
        print("% x:",x)        
        break

print("generations:", g)



Generating instances: Output (2 different runs)

a = array2d(1..rows, 1..cols,[
9, 1, 6, 7, 8, 0, 3, 5, 2, 4, 
1, 6, 0, 9, 3, 7, 2, 5, 8, 4, 
7, 9, 2, 3, 8, 0, 6, 4, 1, 5, 
9, 6, 1, 4, 3, 8, 0, 5, 2, 7, 
]);
% x: [9, 6, 2, 3, 8, 7, 0, 5, 1, 4]
Generations: 1

###
a = array2d(1..rows, 1..cols,[
5, 2, 1, 4, 9, 6, 7, 3, 8, 0, 
3, 0, 8, 1, 6, 4, 7, 5, 2, 9, 
2, 8, 3, 0, 9, 1, 4, 5, 7, 6, 
1, 6, 9, 4, 5, 2, 7, 3, 8, 0, 
]);
% x: [2, 6, 3, 1, 9, 4, 7, 5, 8, 0]
generations: 1



Generating instances
 Some extra constraints are required to make the problem 

instance harder/easier, neater etc.
 Here’s one generated instance with three 7s in a column

 5 2 1 4 9 6 7 3 8 0
 3 0 8 1 6 4 7 5 2 9 
 2 8 3 0 9 1 4 5 7 6
 1 6 9 4 5 2 7 3 8 0 
             ^
             |

 We want to ensure that there are at most 2 duplicate values, 
i.e. at least 3 distinct values

 Use a global constraint to count the distinct values: 
nvalue(array)



Generating instances: The MiniZinc model, adding nvalue/1

constraint
   % ...
   /\ 
   forall(c in 1..cols) (
      sum([x[c] = a[r,c] | r in 1..rows]) >= 1 
      /\ 
      % at least 3 different values
      nvalue(a[..,c]) >= 3
   );

%%% Example output
% {0,5,6,8,3,4,9,2,7,1}
% {5,0,3,2,8,6,9,7,4,1}
% {1,2,7,9,3,4,5,8,0,6}
% {7,0,1,2,5,9,4,8,6,3}
% x = [5,0,1,2,3,4,9,8,7,6]



Generating instances: Picat
 Picat is a multi-paradigm programming language

http://picat-lang.org/
 Logic programming: a large subset of Prolog (unification, 

non-determinism, etc)
 Constraints: CP, SAT, MIP, SMT
 Imperative: for-loop, while loop, reassignments, list/array 

comprehensions
 Functions
 Tabling (memoization)



Generating instances: Picat (the model)

just_forgotten(A,Xs) =>
   N = 10, M = 4,
   A = new_array(M,N), A :: 0..9, % decision variables
   Xs = new_list(10), Xs :: 0..9,

   foreach(I in 1..M)
     all_different(A[I])
   end,   
   all_different(Xs),
   foreach(I in 1..M)
     sum([Xs[J] #= A[I,J] : J in 1..N]) #= 4
   end,
   foreach(J in 1..N)
     sum([Xs[J] #= A[I,J] : I in 1..M]) #>= 1,
     nvalue(C,[A[I,J] : I in 1..M]), C #>= 3
   end,

   Vars = Xs ++ A.vars,
   solve($[ff,split,limit(2)],Vars). % generate at most 2 solutions



Generating instances: Picat (caller program)

import cp. % or sat, mip, smt.
main =>
   _ = random2(),
   % Get a candidate for the A rows
   just_forgotten(A,_),

   % Check if unique solution
   All = find_all(Xs,just_forgotten(A,Xs)),
   if All.len == 1 then
     % Print the solution
     foreach(Row in A)
       println(Row)
     end,
     printf(“% %w\n”,All[1]),
   else
      % if not a unique solution: backtrack
      fail
   end,
   nl.



Generating instances: Picat output

{1,0,8,2,6,4,5,7,9,3}
{1,2,7,3,9,4,5,0,8,6}
{3,6,0,2,8,5,7,4,9,1}
{6,3,8,7,9,2,4,0,5,1}
X = [6,3,7,2,8,4,5,0,9,1]

%%%%%%
{6,5,7,8,9,1,0,2,4,3}
{7,3,8,2,9,6,1,4,5,0}
{6,9,8,7,4,2,1,0,5,3}
{9,2,1,0,6,8,5,4,3,7}
x = [6,2,7,0,9,8,1,4,5,3]



Generating instances: Specific solution

just_forgotten(A,Xs) =>
  % ... 
  % We want this as a solution
  Xs = [5,0,1,2,3,4,9,8,7,6],
  % ...
  

%%%%%%% Solution
{0,5,6,8,3,4,9,2,7,1}
{5,0,3,2,8,6,9,7,4,1}
{1,2,7,9,3,4,5,8,0,6}
{7,0,1,2,5,9,4,8,6,3}
x = [5,0,1,2,3,4,9,8,7,6]



Sicherman Dice



Sicherman Dice
http://en.wikipedia.org/wiki/Sicherman_dice

""" 

Sicherman dice are the only pair of 6-sided dice 
which are not normal dice, bear only positive 
integers, and have the same probability 
distribution for the sum as normal dice.

“””



Sicherman Dice: Model

include "globals.mzn"; 
int: n = 6;
int: m = 10; % max value

% standard distribution
array[2..12] of int: standard_dist = array1d(2..12, [1,2,3,4,5,6,5,4,3,2,1]);

% the two dice
array[1..n] of var 1..m: d1;
array[1..n] of var 1..m: d2;

constraint 
   forall(k in 2..12) (
     standard_dist[k] = sum(i,j in 1..n) ( d1[i]+d2[j] == k))
   )
   % symmetry breaking
   /\ increasing(d1) 
   /\ increasing(d2)
   /\ lex_lesseq(x1, x2)
;



Sicherman Dice: Solution

% The Sicherman Dice
x1: [1, 2, 2, 3, 3, 4]
x2: [1, 3, 4, 5, 6, 8]

% Plain dice
x1: [1, 2, 3, 4, 5, 6]
x2: [1, 2, 3, 4, 5, 6]



Sicherman Dice: Allowing 0 as a value

% ...
array[1..n] of var 0..m: d1; % instead of 1..m
array[1..n] of var 0..m: d2;

% …



Sicherman Dice: Allowing 0 as a value

x1: [0, 1, 1, 2, 2, 3]
x2: [2, 4, 5, 6, 7, 9]
----------
x1: [0, 1, 2, 3, 4, 5]
x2: [2, 3, 4, 5, 6, 7]
----------
x1: [0, 2, 3, 4, 5, 7]
x2: [2, 3, 3, 4, 4, 5]
----------
x1: [1, 2, 2, 3, 3, 4]
x2: [1, 3, 4, 5, 6, 8]
----------
x1: [1, 2, 3, 4, 5, 6]
x2: [1, 2, 3, 4, 5, 6]
----------
==========



Move one coin



Move one coin
 From this configuration of coins

   o oo ooo oooo

move one coin to get the coins in the reverse 
order, i.e. the number of collected coins are 4, 3, 
2, and 1.

(Scam Nation video, Aug 19, 2021)



Move one coin: Model

int: n = 13;
% 0 represents an empty position
array[1..n] of int: goal = [1,0,1,1,0,1,1,1,0,1,1,1,1]; % initial pos
array[1..n] of int: init = [1,1,1,1,0,1,1,1,0,1,1,0,1]; % goal pos

% decision variables
var 1..n: from;
var 1..n: to;

solve satisfy;
constraint
  init[from]= 1 /\ init[to] = 0 /\
  forall(k in 1..n) (
    if k != from /\ k != to then
      goal[k] = init[k]
    endif
  );

output [
        "Move the coin in position \(from) to empty position \(to)\n",
];
 



Move one coin: Solution

Move the coin in position 12 to empty position 2
----------
==========

1234567890123    positions
-------------
o oo ooo oooo    init
           |
           |     position 12
  _________v
 |
 v               position 2
oooo ooo oo o    goal
  
 



A Round of Golf
Logic puzzle

Element constraint



Element constraint
 CP’s version of indexing an array/matrix
 In MiniZinc, this is stated as

     z = x[y]
 x: an array of integers or decision variables
 y: integer/enum or decision variable
 z: integer/enum or decision variable
 In other CP systems this is called element(y,x,z) etc



A Round of Golf (I)
(Dell Favorite Logic Problems, Summer 2000)

Jack and three other golf club workers got together on 
their day off to play a round of eighteen holes of golf. 

Afterward, all four, including Mr. Green, went to the 
clubhouse to total their scorecards. Each man works 
at a different job (one is a short-order cook), and each 
shot a different score in the game. No one scored 
below 70 or above 85 strokes. 
(cont)



A Round of Golf (II)
From the clues below, can you discover each man's full 
name, job and golf score?
1. Bill, who is not the maintenance man, plays golf often and 
had the lowest score of the foursome.
2. Mr. Clubb, who isn't Paul, hit several balls into the woods 
and scored ten strokes more than the pro-shop clerk.
3. In some order, Frank and the caddy scored four and seven 
more strokes than Mr. Sands.
4. Mr. Carter thought his score of 78 was one of his better 
games, even though Frank's score  was lower.
5. None of the four scored exactly 81 strokes.



A Round of Golf: Parameters and decision variables

include "globals.mzn"; 
set of int: d = 1..4;
enum first_name = {Jack, Bill, Paul, Frank}; % Fixed values

% decision variables
% Which first name (1..4) is a last name related to?
var d: Green;
var d: Clubb;
var d: Sands;
var d: Carter;
array[d] of var d: last_name = [Green, Clubb, Sands, Carter];

var d: cook;
var d: maintenance_man;
var d: clerk;
var d: caddy;
array[d] of var d: job = [cook, maintenance_man, clerk, caddy];

array[d] of var 70..85: score;



A Round of Golf: Constraints (1)

Constraint
  % implicit constraints
  all_different(last_name) /\
  all_different(job)       /\
  all_different(score)     /\ % This is stated explicit

  % 1. Bill, who is not the maintenance man, plays golf often and had 
  % the lowest score of the foursome.
  Bill != maintenance_man   /\
  score[Bill] < score[Jack] /\  % Bill is a constant
  score[Bill] < score[Paul] /\
  score[Bill] < score[Frank]/\
 
  % 2. Mr. Clubb, who isn't Paul, hit several balls into the woods and 
  %    scored ten strokes more than the pro-shop clerk.
  Clubb != Paul /\
  % Clubb is a decision variable
  score[Clubb] = score[clerk] + 10   
;



A Round of Golf: Constraints (2)

constraint
  % 3. In some order, Frank and the caddy scored four and seven more 
  %    strokes than Mr. Sands.
  Frank != caddy /\
  Frank != Sands /\
  caddy != Sands /\
  (
    (score[Frank] = score[Sands] + 4 /\
     score[caddy] = score[Sands] + 7 )
     \/
    (score[Frank] = score[Sands] + 7 /\
     score[caddy] = score[Sands] + 4 )
  )
  /\ 
  % 4. Mr. Carter thought his score of 78 was one of his better 
  % games, even though Frank's score was lower.
  Frank != Carter /\
  score[Carter] = 78 /\
  score[Frank] < score[Carter]
;



A Round of Golf: Constraints (3)

constraint
  % 5. None of the four scored exactly 81 strokes.
  forall(i in d) (
    score[i] != 81
  )
;  



A Round of Golf: Solution

first_name: {Jack, Bill, Paul, Frank}
last_name : [4, 1, 2, 3]
Job       : [2, 1, 4, 3]
score     : [85, 71, 78, 75]

Jack Clubb maintenance man 85
Bill Sands cook 71
Paul Carter caddy 78
Frank Green clerk 75
----------
==========

For Bill (id 2) we look up the value of 2 in last_name and job.

The lookup string arrays for last_name and job:

last_name_s = ["Green", "Clubb", "Sands", "Carter"];
job_s = ["cook", "maintenance man", "clerk", "caddy"];



A Round of Golf: Output section

array[d] of string: job_s = ["cook", "maintenance man", "clerk", "caddy"];
array[d] of string: last_name_s = ["Green", "Clubb", "Sands", "Carter"];

output [
  "first_name: \(first_name)\n",
  "last_name : \(last_name)\n",
  "job       : \(job)\n",
  "score     : \(score)\n\n",
]
++
[
 "\(first_name[i]) " ++

 % looking up which last_name[j] has the value i
 [last_name_s[j] | j in r where fix(last_name[j]) = i][1] ++ " " ++

 [job_s[j] | j in r where fix(job[j]) = i][1] ++ " " ++
 "\(score[i])\n"
 | i in r
];



Nontransitive dice



Nontransitive dice
http://en.wikipedia.org/wiki/Nontransitive_dice

“””

A set of dice is intransitive (or nontransitive) if it contains three dice, 
A, B, and C, with the property that A rolls higher than B more than 
half the time, and B rolls higher than C more than half the time, but 
it is not true that A rolls higher than C more than half the time. 
“””

In short
   A |> B, B |> C, C |> A
where ‘|>’ means ‘rolls higher more than half the time’.
I.e. the relation is not transitive. 



Nontransitive dice
 Simple example: Three d4 dice

A: 1 2 4 5 
B: 1 3 4 4
C: 3 3 3 4

 1 2 4 5  : A win 0 + 1 + 2 + 4  = 7   (A > B)
1 3 4 4  : B win 0 + 2 + 2 + 2  = 6

 1 3 4 4  : B win 0 + 0 + 3 +3   = 6    (B > C)
3 3 3 4  : C win 1 + 1 + 1 + 2  = 5

 3 3 3 4  : C win 2 + 2 + 2 + 2  = 8    (C > A)
1 2 4 5  : A win 0 + 0 + 3 + 4  = 7



Nontransitive dice: The setup

include "globals.mzn"; 
int: m = 3;       % number of dice
int: n = 4;       % number of sides of each die

int: max_val = 6; % max value of each die

% Decision variables: The dice
array[1..m, 1..n] of var 1..max_val: dice;

%
% The competitions: 
%   die 1 vs die 2, die 2 vs die 1
%   die 2 vs die 3, die 3 vs die 2
%   ...
%   die m vs die 1, die 1 vs die m
%
array[0..m-1, 1..2] of var 0..n*n: comp;



Nontransitive dice: Constraints

constraint
   % Number of wins for [d1 vs d2, d2 vs d1]
   forall(d in 0..m-1) (
      let {
         int: d1 = 1+(d mod m);       % "This” die
         int: d2 = 1+((d + 1) mod m); % "Next” die
      } in
      comp[d,1] = sum(r1, r2 in 1..n) (dice[d1, r1] > dice[d2, r2]) /\
      comp[d,2] = sum(r1, r2 in 1..n) (dice[d2, r1] > dice[d1, r2])
   )
   /\ 
   % Nontransitivity
   % All dice 1..m-1 must beat the follower, and die m must beat die 1
   forall(d in 0..m-1) (
     comp[d,1] > comp[d,2]
   )
   /\ % Symmetry breaking: order the number of each die
   forall(d in 1..m) (
     increasing([dice[d,i] | i in 1..n])
   )
   /\ lex2(dice) % lexicographic order of the dice
;



Nontransitive dice: One solution for three d4

dice:
 1  2  4  5   % A
 1  3  4  4   % B 
 3  3  3  4   % C
comp:
  7   6       % A > B
  6   5       % B > C
  8   7       % C > A



Nontransitive dice: Two solutions for four d6 (m=4, n=6)

dice:
 1  2  5  5  5  6
 1  4  4  4  6  6
 2  2  3  5  6  6
 2  2  5  5  5  6
comp:
 17  16
 17  15
 14  13
 13  11
----------
dice:
 1  2  2  6  6  6
 1  5  5  5  5  6
 2  4  4  4  6  6
 3  3  3  5  6  6
comp:
 17  15
 20  14
 17  15
 18  12



Nontransitive dice: Six d6, all_different(dice)

m=6;
n=6;
max_val=m*n;

constraint all_different(array1d(dice));
% and the same constraints as original model

% One solution of many
dice:
 1 10 11 14 34 35
 2  9 13 16 32 33
 3  5  7 29 31 36
 4 25 26 27 28 30
 6 17 18 19 22 23
 8 12 15 20 21 24
comp:
 19  17
 19  17
 19  17
 30   6
 19  17
 20  16



Huey, Dewey, and Louie
Reification



Huey, Dewey, and Louie
Huey, Dewey and Louie are being questioned by their uncle. 
These are the  statements they make:

 Huey: Dewey and Louie has equal share in it; if one is quitly, so is the 
other.

 Dewey: If Huey is guilty, then so am I.
 Louie: Dewey and I are not both quilty.
 Their uncle, knowing that they are cub scouts, realises that they cannot 

tell a lie. Has he got sufficient information to decide who (if any) are 
quilty?

(Marriott & Stuckey: “Programming with Constraints”, 1998, page 42)



Huey, Dewey, and Louie: Model

% decision variables
% true: is guilty  false: is not guilty
var bool: huey; 
var bool: dewey;
var bool: louie;

solve satisfy;

constraint
   % Huey: Dewey and Louie has equal share in it;
   %        if one is quitly, so is the other.
   (dewey <-> louie)
  
   % Dewey: If Huey is guilty, then so am I.
   /\ (huey -> dewey)

   % Louie: Dewey and I are not both quilty.
   /\ (not (dewey /\ louie));



Huey, Dewey, and Louie: Solution

[false, false, false]
----------
==========

I.e. all three are innocent.
 



Short history of CP
 60s-70s: using constraint satisfaction techniques, especially for graphical 

systems
 80s: integrated with logic programming (Prolog) to create Constraint 

Logic Programming (CLP). Much theoretical work on the underlying 
principles as well as global constraints.

 90s and onward: CP integrated in other systems (C++, Java, Python, etc)
 2010s: Integration of CP with SAT and other techniques: Lazy Clause 

Generation, Hybrid CP-SAT systems.
MiniZinc is recognized as a de facto standard for comparing constraint 
solvers. MiniZinc Challenge since 2008.

 2020s: Still much theoretical work on principles and adding global 
constraints. 



MiniZinc solving steps
Solving a MiniZinc problem is done in two steps:

 1) First the model (.mzn) + data (.dzn) is 
converted to a FlatZinc file (.fzn) for the specific 
solver. This is a flattened version of the model.

 2) Then the selected FlatZinc solver is called 
which then solves the problem 
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