
Constraint
Programming
Solving combinatorial puzzles
when you are lazy
Håkan Kjellerstrand (hakank@gmail.com)

http://hakank.org/cp_mensa_2023/2023-05-19

Overview

Overview
 Presentation of me
 A little on Combinatorial Puzzles, Constraint

Programming (CP), and MiniZinc
 SEND+MORE=MONEY
 Sudoku
 More puzzles showing features of CP

About me
 Håkan Kjellerstrand (hakank@gmail.com)

http://hakank.org/
http://hakank.org/minizinc/

 GitHub: https://github.com/hakank/hakank
 Twitter: https://twitter.com/hakankj
 Facebook: https://www.facebook.com/hakankj
 StackOverflow:

https://stackoverflow.com/users/195636/hakank

mailto:hakank@gmail.com
http://hakank.org/
http://hakank.org/
https://github.com/hakank/hakank
https://twitter.com/hakankj
https://www.facebook.com/hakankj
https://stackoverflow.com/users/195636/hakank

Background
 First: Tester, Technical Support, Technical Writer

(1982-1994)
 Then: Software developer (1996-2019)
 2008: Constraint Programming as a hobby
 Now: Independent Researcher / Consultant

Constraint Programming, Logic Programming, etc.

What do I do with CP?
 Constraint models on puzzles, combinatorial

problems, and some serious stuff: consulting, mostly
scheduling problems

 Testing different CP systems (~30) and complains
about bugs/missing features/etc
http://www.hakank.org/common_cp_models/

 First CP dedicated blog (2009):

My Constraint Programming Blog

http://hakank.org/constraint_programming_blog/

Some of my puzzle models
A Digital Difficulty, A Round of Golf, ABC Endview, Age of three Children, All interval, Ambigous dates, Another kind of
Magic Square, Archery Match, Archery puzzle, Arch Friends, Autoref, Balanced brackets, Bales of Hay, Bank card, Barrells
puzzle, Binero/Binoxxo/Binary Sudoku, Birthday coins, Book buy, Bridge and Torch problem, Broken weights, Calculs
d’Enfer, Chandelier balancing, Circling squares, Clock triplets, Coin problems (coin changes etc), Combination locks,
Consecutive digits, Controversy about the weekday, Countdown, Crossfigure, Crosswords, Crypta, Crypto, Crystal maze,
Curious set of integers, Curious numbers, de Bruijn sequences, Dice with a difference, Digits of the square, Dividing the
spoils, Divisible by 9 through 1, Divisible by 1 to 9, Domino, Drive Ya Nuts, Bishop placement, Dudeney numbers, Einstein
puzzle / Zebra puzzle, Some Enigma puzzles, Farmer and cow problem, Fill a pix, Five brigades, Five brigands, Five
elements, Five statements, Five words that share no letters, Four islands, Funny dice, Futoshiki, Golomb ruler, Grocery
puzzle, Hanging weights, Hitori, Gunport problem, Harry Potter Seven Potions, Hidato, Ice cream, Jive turkeys, Jobs puzzle,
Just forgotten, Kakurasu, Kakuro, KenKen, Killer Sudoku, Knight tour, Kojun, Kyudoku, Labeled dice, Langford’s number
problem, Least difference, Letter square, Lights out, M12 puzzle, Magic sequences, Magic series, Magic square and cards,
Magic squares, Magic Sudoku, Manasa and stones, Map coloring, Minesweeper, Mislabeled boxes, Missing digit, Monkey &
Coconuts, Monks and doors, Monorail, Move one coins, Multi Sudoku, Music Men, N-queens, Non dominant queens,
Nonograms, Nontransitive dice, N-puzzle, Number locks, Numberlink, Numbrix, One off digit problem, Ormat games,
Pandigital numbers, Perfect square sequence, Photo problem, Pi Days Sudoku, Pool ball triangles, Prime multiplication,
Pyramid of numbers, Rectangle placements, Rogo, Rookwise chain, Safe cracking, Samurai puzzle, Sangraal puzzle, Secret
santa, Self referential quiz, Self referential sentence, Rotation puzzle, SEND+MORE=MONEY, SEND+MOST=MONEY,
Seseman puzzle, Shikaku, Sicherman dice, Ski assignment, SET puzzle, Skyscraper, Smullyan’s Knight and Knaves
problem, Solitaire, Square root of Wonderful, Stamp licking, Strimko, Sudoku, Suguru, Sumaddle, Sumbrero, Survo puzzle,
Takuzu, Ten statements, The Paris Marathon problem, The Vicar’s age, Three jugs problem, Three in a row puzzle, Twelve
statements, Twin letters, Two cube calendar, Uniform dice, Who killed Agatha, Wine cask puzzle, Word golf, Wijuko

The Picat book (2015)
Zhou, Kjellerstrand, Fruhman:
Constraint Solving and Planning with Picat
Springer (2015)

http://picat-lang.org/picatbook2015.html

(Free PDF available)

Especially the chapters on CP:
- 2. Basic Constraint Modeling
- 3. Advanced Constraint Modeling

My Picat page: http://hakank.org/picat/

http://picat-lang.org/picatbook2015.html

Combinatorial puzzles

Combinatorial puzzles
 Not well defined
 Single person puzzles based on integers/finite

domains (including booleans).
 Logicial puzzles, mathematical recreation

problems, pen-and-paper/grid puzzles
 Sometimes with some initial hints
 Sometimes exactly one solution

Constraint Programming

What is CP used for?
 Scheduling, Resource allocation, Staff rostering
 Packing problems
 Vehicle / transport routing / TSP
 Constraint satisfaction problems (CSP)
 Combinatorial search and optimization
 Etc.
 And: Solving puzzles!

General concepts in CP
 Decision variables with finite domains

(integers)
 Constraints relating these variables to each

other
 Find a solution (or many/all solutions) satisfiing

all the constraints and the domains of the
variables. Or show than there is no solution.

MiniZinc

MiniZinc
 https://www.minizinc.org/

https://github.com/MiniZinc
 MiniZinc Handbook:

https://www.minizinc.org/doc-latest/index.html
 MiniZinc-Python

https://minizinc-python.readthedocs.io/en/latest/
 MiniZinc Challenge:

https://www.minizinc.org/challenge.html
 My MiniZinc Page

http://hakank.org/minizinc/

https://www.minizinc.org/
https://minizinc-python.readthedocs.io/en/latest/

MiniZinc
 High level constraint modeling language
 Many different constraint solvers
 Support for many global constraints
 Not a full fledged programming language.

For more complex tasks a proper programming
language might be needed, e.g. MiniZinc-Python

MiniZinc: parts of a model
 Include statement
 Parameters, fixed data (hints)

Can be in a separate data file
 Decision variables with domains
 Constraints
 Solve statement
 Output section

SEND+MORE=MONEY
First puzzle

SEND+MORE=MONEY
 Assign a distinct digit (0..9) to each of the letters

(S,E,N,D,M,O,R,Y) so this equation is satisfied:

 SEND+MORE=MONEY

with S and M > 0

SEND+MORE=MONEY: Parameters, decision variable with domains

% Fixed parameter
int: N = 9; % upper bound of the domain

% Decision variables with domains
var 0..N: s; % ‘s’ can be assigned to any values between 0..9
var 0..N: e;
var 0..N: n;
var 0..N: d;
var 0..N: m;
var 0..N: o;
var 0..N: r;
var 0..N: y;

SEND+MORE=MONEY: The constraints

% All values must be distinct
constraint all_different([s,e,n,d,m,o,r,y]);

% The equation SEND + MORE = MONEY
constraint
 1000*s + 100*e + 10*n + d +
 1000*m + 100*o + 10*r + e =
 10000*m + 1000*o + 100*n + 10*e + y

 /\ % leading digits cannot be 0
 s > 0 /\ m > 0;

SEND+MORE=MONEY: Solve statement

% We want all solutions

solve satisfy;

SEND+MORE=MONEY: The complete model

include(“globals.mzn”); % for loading definition of all_different

int: N = 9;

var 0..N: s; var 0..N: e; var 0..N: n; var 0..N: d;
var 0..N: m; var 0..N: o; var 0..N: r; var 0..N: y;

constraint all_different([s,e,n,d,m,o,r,y]);
constraint
 1000*s + 100*e + 10*n + d +
 1000*m + 100*o + 10*r + e =
 10000*m + 1000*o + 100*n + 10*e + y
 /\
 s > 0 /\m > 0;

solve satisfy;

SEND+MORE=MONEY: Solution

$ minizinc send_more_money.mzn -a

s = 9;
e = 5;
n = 6;
d = 7;
m = 1;
o = 0;
r = 8;
y = 2;

==========

SEND + MORE = MONEY
9567 + 1085 = 10652

Command line: Using -a (all solutions) to ensure a unique solution.
In MiniZincIDE there’s an option to show all solutions.

MiniZincIDE

Though I tend to use Emacs

MiniZincIDE: model

MiniZincIDE output

Sudoku

Sudoku

Source: Wikipedia

Sudoku
 Given a N x N grid with values 1..N, together with

some hints, ensure that:
 All values in each row are all different
 All values in each column are all different
 All values in each sub grid (√N x √N) are all

different

Sudoku
The rules of Sudoku = The constraints

Sudoku: The setup, include, parameters and decision variables

include "globals.mzn";

% parameters
int: n; % size of grid (n x n)
int: m = ceil(sqrt(n)); % size of sub regions

% decision variables
array[1..n, 1..n] of var 1..n: x;

solve satisfy;

Sudoku: Convert the rules to constraints

constraint

 forall(i in 1..n) (
 % All values in each row are all different
 all_different([x[i,j] | j in 1..n]) /\

 % All values in each column are all different
 all_different([x[j,i] | j in 1..n])
)

 /\
 % All values in each sub grid (√N x √N) are all different
 forall(i in 0..m-1,j in 0..m-1) (
 all_different([x[r,c] | r in i*m+1..i*m+m, c in j*m+1..j*m+m])
);

Sudoku: Simple problem instance (4x4)

n = 4;

%
% The integers are the given hints.
% '_' represents an unknown value.
%
x = array2d(1..n, 1..n, [
 4, _, _, _,
 3, 1, _, _,

 _, _, 4, 1,
 _, _, _, 2,
]);

Sudoku: solution

4 2 1 3
3 1 2 4
2 3 4 1
1 4 3 2

==========

Sudoku 4x4
Simple constraint propagation

Constraint Propagation
 A simplified example of how a CP solver solves a

problem using Constraint Propagation
 Not all constraint solvers use this technique, but it

can be instructive to see what is happening under
the hood of a constraint solver.

 Some other solving techniques: SAT, Linear
Programming, Integer programming, SMT, Lazy
Clause Generation, Local Search.

Sudoku 4x4 – simple propagation example

4 _ _ _
3 1 _ _

_ _ 4 1
_ _ _ 2

The (unique) solution

4 2 1 3
3 1 2 4

2 3 4 1
1 4 3 2

How does a CP solver reach this solution?

Sudoku 4x4 – simple propagation example

4 1234 1234 1234

3 1 1234 1234

1234 1234 4 1
1234 1234 1234 2

Add DOMAINS (1..4) to all
unknown variables.
Hints are FIXED already.

Now we will propagate the
three alldifferent constraints:
- all_different(ROW)
- all_different(COLUMN)
- all_different(BLOCK)

This is a very simplified example.
Real CP systems use more intelligent
propagation.

Sudoku 4x4 – simple propagation example

4 2 1234 1234

3 1 1234 1234

1234 1234 4 1
1234 1234 1234 2

Cell (1,1): Fixed value (4).

Cell (1,2): Reduce:
 - remove 4 (row, block)

 - remove 1 (column, block)
 - remove 3 (block)
 → Single value: 2

Sudoku 4x4 – simple propagation example

4 2 1 3 1234

3 1 1234 1234

1234 1234 4 1
1234 1234 1234 2

Cell (1,3): Reduce:
 - remove 4 (row, column)

 - remove 2 (row)
 → {1 3}

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 1234 1234

1234 1234 4 1
1234 1234 1234 2

Cell (1,4): Reduce:
 - remove 4 (row)

 - remove 1 (column)
 - remove 2 (column)
 → 3

Note: Here we don't go back to
 fix cell (1,3).

Cell (2,1): fixed (3)
Cell (2,2): fixed (1)

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 1234

1234 1234 4 1
1234 1234 1234 2

Cell (2,3): Reduce:
 - remove 3 (row)

 - remove 1 (row)
 - remove 4 (column)

 → 2

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

1234 1234 4 1
1234 1234 1234 2

Cell (2,4): Reduce:
 - remove 3 (row)

 - remove 1 (row, column)
 - remove 2 (row, column)

 → 4

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

 2 1234 4 1
1234 1234 1234 2

Cell (3,1): Reduce:
 - remove 4 (row, column)

 - remove 1 (row)
 - remove 3 (column)

 → 2

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

 2 3 4 1
1234 1234 1234 2

Cell (3,2): Reduce:
 - remove 1 (row, column, block)

 - remove 2 (row)
 - remove 4 (row)
 → 3

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

 2 3 4 1
1234 1234 1234 2

Cell (3,3): Fixed.
Cell (3,4): Fixed.

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

 2 3 4 1
1 1234 1234 2

Cell (4,1): Reduce
 - remove 2 (row)
 - remove 4 (column)
 - remove 3 (column)
 → 1

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

 2 3 4 1
1 4 1234 2

Cell (4,2): Reduce
 - remove 1 (row)
 - remove 2 (row)
 - remove 3 (column)
 → 4

Sudoku 4x4 – simple propagation example

4 2 1 3 3

3 1 2 4

 2 3 4 1
1 4 3 2

Cell (4,3): Reduce
 - remove 2 (row, block)
 - remove 4 (column, block)

– - remove 1 (block)
 → 3

Cell (4,4): Fixed 2

Are we finished? No!

There is still a variable/cell with
no single assignment, i.e. Cell (1,3).

Sudoku 4x4 – simple propagation example

4 2 1 3

3 1 2 4

 2 3 4 1
1 4 3 2

Cell (1,3): Reduce
 - remove 3 (row, block)
 → 1

And now all variables has been
assigned to a single value.

Sudoku 4x4 – simple propagation example

4 2 1 3
3 1 2 4

2 3 4 1
1 4 3 2

… and we got a solution!

It is unique – as a Sudoku should be.

Magic squares

Magic squares
 Place all numbers 1..N*N in a NxN grid with

a magic total (M) such that
 The sum of each row = M
 The sum of each column = M
 The sum of main diagonal = M
 The sum of opposite diagonal = M
 The magic total M = N*(N*N+1) // 2

Magic squares: 3x3

Source: https://en.wikipedia.org/wiki/Magic_square

Magic squares: Modeling
 What are the parameters?
 What are the decision variables and their

domains?
How to represent them?

 What are the constraints?
How to model them?

 One, two, all solutions?

Magic squares: Parameters

include "globals.mzn";
int: n;
int: total = (n*(n*n + 1)) div 2;

Magic squares: Decision variables

array[1..n,1..n] of var 1..n*n: magic;

Magic squares: Constraints

constraint
 all_different(magic)

 /\ % rows
 forall(i in 1..n) (
 sum(j in 1..n) (magic[i,j]) = total
)
 /\ % columns
 forall(j in 1..n) (
 sum(i in 1..n) (magic[i,j]) = total
)
 /\ % main diagonal (/)
 sum(i in 1..n) (magic[i,i]) = total

 /\ % secondary diagonal (\)
 sum(i in 1..n) (magic[i,n-i+1]) = total
;

Magic squares: Complete model (slightly shorter)

include "globals.mzn";
int: n;
int: total = (n*(n*n + 1)) div 2;

array[1..n,1..n] of var 1..n*n: magic; % decision variables

solve satisfy;

constraint
 all_different(magic)
 /\
 forall(i in 1..n) (
 sum(j in 1..n) (magic[i,j]) = total /\ % rows
 sum(j in 1..n) (magic[j,i]) = total % columns
)
 /\ % main diagonal (/)
 sum(i in 1..n) (magic[i,i]) = total
 /\ % secondary diagonal (\)
 sum(i in 1..n) (magic[i,n-i+1]) = total
;

Magic squares: Solutions (n=3, all 8 solutions)

2 9 4 2 7 6
7 5 3 9 5 1
6 1 8 4 3 8
---------- ----------
8 3 4 4 3 8
1 5 9 9 5 1
6 7 2 2 7 6
---------- ----------
6 7 2 8 1 6
1 5 9 3 5 7
8 3 4 4 9 2
---------- ----------
4 9 2 6 1 8
3 5 7 7 5 3
8 1 6 2 9 4
---------- ----------
 ==========

Magic squares
Symmetry breaking

(Frenicle standard form)

Symmetry breaking
 For certain problems there are symmetries in the

solutions.
 If we are not interested in all solutions, we can

break symmetries by some ordering constraint.
For example the increasing constraint.

 Can make the solving - sometimes considerably -
faster

Magic Square: Frénicle form
Frénicle standard form (after Bernard Frénicle de
Bessy):

 The element at position magic[1,1] is the smallest
of the four corner elements

 The element at position magic[1,2] is smaller than
the element in magic[2,1].

 This removes the 8 symmetries (rotations, flips, etc)

Magic squares: Symmetry breaking, Frénicle form

constraint
 magic[1,1] = min([magic[1,1], magic[1,n], magic[n,1], magic[n,n]])
 /\
 magic[1,2] < magic[2,1]
;

Magic squares: Number of solutions

N W/o symmetry breaking With Frénicle form

1 1 -
2 0 0
3 8 1 (8/8)
4 7040 880 (7040/8)
5 2202441792 275305224

Babysittning
Logic puzzle

Element constraint

Element constraint
 CP’s version of indexing an array/matrix
 In MiniZinc, this is stated as

 z = x[y]
 x: an array of integers or decision variables
 y: integer/enum or decision variable
 z: integer/enum or decision variable
 In other CP systems this is called element(y,x,z) etc

Babysittning puzzle (1/2)
(Dell Logic puzzle, 1998)

Each weekday, Bonnie takes care of five of the
neighbors' children. The children's names are
Keith, Libby, Margo, Nora, and Otto; last names
are Fell, Gant, Hall, Ivey, and Jule. Each is a
different number of years old, from two to six.
Can you find each child's full name and age?

(Next: The hints)

Babysittning puzzle (2/2)
The hints:

1. One child is named Libby Jule.

2. Keith is one year older than the Ivey child, who is
one year older than Nora.

3. The Fell child is three years older than Margo.

4. Otto is twice as many years old as the Hall child.

Determine: First name - Last name - Age

Babysitting: Parameters and decision variables

include "globals.mzn";

% Parameters
set of int: r = 1..5;
enum first_name = {Keith, Libby, Margo, Nora, Otto};

% Decision variables

array[r] of var 2..6: age;

var r: Fell;
var r: Gant;
var r: Hall;
var r: Ivey;
var r: Jule;
array[r] of var r: last_name = [Fell, Gant, Hall, Ivey, Jule];
% For the presentation
array[r] of string: last_name_s = ["Fell", "Gant", "Hall", "Ivey", "Jule"];

solve satisfy;

Babysitting: Constraints

constraint
 all_different(last_name) /\
 all_different(age) /\

 % 1. One child is named Libby Jule.
 Jule = Libby /\

 % 2. Keith is one year older than the Ivey child, who is one
 % year older than Nora.
 Keith != Ivey /\ Ivey != Nora /\
 age[Keith] = age[Ivey] + 1 /\ % element with decision variables
 age[Ivey] = age[Nora] + 1 /\

 % 3. The Fell child is three years older than Margo.
 Fell != Margo /\
 age[Fell] = age[Margo] + 3 /\

 % 4. Otto is twice as many years old as the Hall child.
 Otto != Hall /\
 age[Otto] = age[Hall] * 2;

Babysitting: Solution

first name: {Keith, Libby, Margo, Nora, Otto}
last_name : [1, 4, 3, 5, 2] % lookup
age : [5, 6, 2, 3, 4]

Keith Fell (5 yo)
Libby Jule (6 yo)
Margo Hall (2 yo)
Nora Gant (3 yo)
Otto Ivey (4 yo)

==========

last_name_s = ["Fell", "Gant", "Hall", "Ivey", "Jule"];

Babysitting: Output section

output
[
 "first name: \(first_name)\n",
 "last_name : \(last_name)\n" ++
 "age : \(age)\n\n"
]
++
[
 "\(first_name[i]) " ++
 % Lookup of last name
 [last_name_s[j] | j in r where fix(last_name[j]) = i][1] ++ " " ++
 "(\(age[i]) yo)\n"
 | i in r
];

Global constraints
Special designed algorithm for common constraints.

 all_different: all values must be distinct
 element: decision variables as indices in an array (as z=x[y])
 increasing: ordered values, symmetry breaking
 global_cardinality: counting the occurrence of values
 cumulative: scheduling
 regular: automata / regular expression
 table: allow only certain combinations of decision variables

Divisible by 1 to 9
Predicates

Divisible by 1 to 9
 Find a 10 digit number that uses each of the digits

0 to 9 exactly once and where the number formed
by the first n digits of the number is divisible by n.

(Source: Classic, via MindYourDecisions)

Divisible by 1 to 9
 Let A, B, C, D, E, F, G, H, I, J be 10 different digits

(with domains 0..9). Then

A mod 1 = 0

AB mod 2 = 0

...

ABCDEFGHI mod 9 = 0

ABCDEFGHIJ mod 10 = 0

Divisible by 1 to 9
 One approach would be the approach we used in

SEND+MORE=MONEY:
 A mod 1 = 0 /\

(A*10 + B) mod 2 = 0 /\
...

(A*… + B* … + C* … + J) mod 10 = 0
 But that’s no fun. Let’s automate this using a

predicate.

Divisible by 1 to 9: Predicate to_num

/*
 to_num(a, n, base)
 Ensure that the digits in array `a` corresponds to the number `n`,
 in base `base`.
 Both `a` and/or `n` can be decision variables.
 `base` is fixed

 Example: to_num([1,2,3], 123, 10).

*/
predicate to_num(array[int] of var int: a, var int: n, int: base) =
 let {
 int: len = length(a)
 } in
 n = sum(i in 1..len) (base^(len-i) * a[i])
;

Divisible by 1 to 9: Parameters, decision variables

int: base;
int: n = base;
int: m = ceil(pow(n,base))-1; % 999999999 for base 10: 10^10-1

% Decision variables
array[1..n] of var 0..n-1: x; % the digits: 0..9
array[1..n] of var 0..m: t; % the numbers. t[n] contains the answer

base = 10;

Divisible by 1 to 9: Constraints

constraint
 all_different(x) /\

 %
 % ensure that x[1..1] is divisible by 1
 % ensure that x[1..2] is divisible by 2
 % ...
 % ensure that x[1..9] is divisible by 9
 % ensure that x[1..10] is divisible by 10
 %
 forall(i in 1..n) (
 % t[i] corresponds to the number for x[1..i]
 to_num(x[1..i], t[i], base) /\
 t[i] mod i = 0 % divisibility
);

Divisible by 1 to 9: Solution

base: 10
x: [3, 8, 1, 6, 5, 4, 7, 2, 9, 0]
t: [3, 38, 381, 3816, 38165, 381654, 3816547, 38165472, 381654729, 3816547290]

==========

% Another base:
base: 8
x: [5, 2, 3, 4, 7, 6, 1, 0] % ← base 8 digits
t: [5, 42, 339, 2716, 21735, 173886, 1391089, 11128712] % ← base 10 numbers

base: 8
x: [3, 2, 5, 4, 1, 6, 7, 0]
t: [3, 26, 213, 1708, 13665, 109326, 874615, 6996920]

base: 8
x: [5, 6, 7, 4, 3, 2, 1, 0]
t: [5, 46, 375, 3004, 24035, 192282, 1538257, 12306056]

==========

Furniture moving
The “serious example”

Scheduling

Furniture moving
 Requirements

- Piano: 3 persons, 30 min
- Chair: 1 person, 10 min
- Bed: 3 persons, 15 min
- Table: 2 persons, 15 min

 Precedence constraint: The bed must be moved
before the piano

 (From Marriott & Stuckey: “Programming with
constraints”, 1998)

Furniture moving: Variables and data

include "globals.mzn";

enum Furnitures = {Piano, Chair, Bed, Table};
int: n; % number of things
int: upper_limit;
array[1..n] of int: durations;
array[1..n] of int: resources;
array[1..n] of string: names;

% decision variables
array[1..n] of var 0..upper_limit: start_times;
array[1..n] of var 0..upper_limit*2: end_times;
var 0..100: num_persons;
var 0..100: end_time;

% data
n = 4;
upper_limit = 160;
durations = [30,10,15,15];
resources = [3,1,3,2];
names = ["Piano","Chair","Bed","Table"];

Furniture moving: Constraints

constraint

 % cumulative(start_times,durations,required_resources,max_resource)
 cumulative(start_times, durations, resources, num_persons)

 /\ % calculate end time for each task
 forall(i in 1..n) (end_times[i] = start_times[i] + durations[i])

 /\ % first job starts at time 0
 min(start_times) = 0

 /\
 end_time = max(end_times)

 /\ % move the bed before the piano
 end_times[Bed] < start_times[Piano]

 /\ % max number of people
 num_persons <= 4
;

Furniture moving: (multi) objective and output

% …

solve minimize num_persons * end_time; % multi-objective

output [
 "num_persons: \(num_persons)\n”,
 "resources : \(resources)\n",
 "start_times: \(start_times)\n",
 "durations : \(durations)\n",
 "end_times : \(end_times)\n",
 "end_time : \(end_time)\n",
 show_gantt(start_times,durations,names)
];

Furniture moving: Solution for minimize num_persons*end_time

Nonogram
Regular constraint

Nonogram
https://www.csplib.org/Problems/prob012/

 A grid puzzle where the hints are the number of
chunks of filled cells

 The hint “2 2” means that
there must be two cells filled,
followed by at least
one empty cell, followed by
two filled cells.

Source: Wikipedia

Nonogram - regexes
 Regular expressions to the rescue!
 We model this as a grid of 0s (empty cells) and 1s

(filled cells).
 The hint “2 2” can then be translated to the regex

”0*110+110*”
or
”0*1{2}0+1{2}0*”

 The global constraint regular supports this.

Nonogram: Setup and output

include "globals.mzn";

% Parameters
int: r; % number of rows
int: c; % number of columns
array[1..r] of string: rows; % row hints
array[1..c] of string: cols; % column hints

% Decision variables
array[1..r,1..c] of var 0..1: x; % 1: filled, 0: not filled

solve satisfy;

output [
 if j = 1 then "\n" else "" endif ++
 if fix(x[i,j]) = 0 then " " else "#" endif
 | i in 1..r, j in 1..c
] ++ ["\n"];

Nonogram: Problem instance (the “P” instance)

r = 11; c = 8;
rows = ["0+", % 0
 "0* 1{4} 0*", % 4
 "0* 1{6} 0*", % 6
 "0* 1{2} 0+ 1{2} 0*", % 2 2
 "0* 1{2} 0+ 1{2} 0*", % 2 2
 "0* 1{6} 0*", % 6
 "0* 1{4} 0*", % 4
 "0* 1{2} 0*", % 2
 "0* 1{2} 0*", % 2
 "0* 1{2} 0*", % 2
 "0+"]; % 0
cols = [
 "0+", % 0
 "0* 1{9} 0*", % 9
 "0* 1{9} 0*", % 9
 "0* 1{2} 0+ 1{2} 0*", % 2 2
 "0* 1{2} 0+ 1{2} 0*", % 2 2
 "0* 1{4} 0*", % 4
 "0* 1{4} 0*", % 4
 "0+"]; % 0

Nonogram: Constraints

constraint
 % Row hints
 forall(i in 1..r) (
 regular([x[i,j] | j in 1..c], rows[i])
)
 /\
 % Column hints
 forall(j in 1..c) (
 regular([x[i,j] | i in 1..r], cols[j])
)
;

Nonogram: Solution

 ####
 ######
 ## ##
 ## ##
 ######
 ####
 ##
 ##
 ##

==========

Regular constraint
 regular/2 is a wrapper for the general regular/6

constraint: a constraint for an automaton
regular(automaton, n_states, input_max,
transition,initial_state,accepting_states)

 Rostering, scheduling, sequencing, etc.
And Puzzles: pentonomies, the 3 jugs problem, etc

 My original Nonogram solver used this version of
regular: quite hairy MiniZinc code to convert hints
to automaton

Regular constraint
Simple automaton for nurse rostering shifts:

Shifts d:day, n:night, o:off (From the MiniZinc Tutorial)

1 2

3

4

5

6

o

o o

o

o

o

d {d,n} {d,n}

n d d

n

Crossword
Table constraint

Crossword
Problem instance from Bratko “Prolog
Programming for AI”, 4th ed (2011, p 27)

The table constraint
 Restricts the allowed assignments for a collection of

decision variables.
 The constraint
 table([A,B,C,D], array2d(1..3,1..4,
 [1,2,3,4,
 2,3,4,1,
 3,4,1,2]));

restricts the variables A, B, C, and D to be either
 A=1, B=2, C=3, D=4 or
 A=2, B=3, C=4, D=1 or
 A=3, B=4, C=1, D=2

Crossword: Data, the words (skipping some declarations)

enum alpha = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z};
words3 = array2d(1..num_words3, 1..3,
 [d,o,g,
 r,u,n,
 t,o,p]);
words4 = array2d(1..num_words4, 1..4,
 [f,i,v,e,
 f,o,u,r,
 l,o,s,t,
 m,e,s,s,
 u,n,i,t]);
words5 = array2d(1..num_words5, 1..5,
 [b,a,k,e,r,
 f,o,r,u,m,
 g,r,e,e,n,
 s,u,p,e,r]);
words6 = array2d(1..num_words6, 1..6,
 [p,r,o,l,o,g,
 v,a,n,i,s,h,
 w,o,n,d,e,r,
 y,e,l,l,o,w]);

Crossword: Data, the problem instance

%
% L1 L2 L3 L4 L5 XXX
% L6 XXX L7 XXX L8 XXX
% L9 L10 L11 L12 L13 L14
% L15 XXX XXX XXX L16 XXX
%

problem = array2d(1..rows, 1..cols,
 [1, 2, 3, 4, 5, 0,
 6, 0, 7, 0, 8, 0,
 9, 10, 11, 12, 13, 14,
 15, 0, 0, 0, 16, 0]);

Crossword: Constraints

%
% L1 L2 L3 L4 L5 XXX
% L6 XXX L7 XXX L8 XXX
% L9 L10 L11 L12 L13 L14
% L15 XXX XXX XXX L16 XXX
%

%
% Find the words
%
constraint
 % rows
 table([L[1],L[2],L[3],L[4],L[5]], words5) /\
 table([L[9],L[10],L[11],L[12],L[13],L[14]], words6) /\

 % columns
 table([L[1],L[6],L[9],L[15]], words4) /\
 table([L[3],L[7],L[11]], words3) /\
 table([L[5],L[8],L[13],L[16]], words4)
;

Crossword: Solution (unique)

%
% L1 L2 L3 L4 L5 XXX
% L6 XXX L7 XXX L8 XXX
% L9 L10 L11 L12 L13 L14
% L15 XXX XXX XXX L16 XXX
%

f o r u m _
i _ u _ e _
v a n i s h
e _ _ _ s _

==========

Crossword: Larger instances
 In 2011, I did some experiments with crossword

grids of different sizes (5x5..23x23) and a much
larger word list

 MiniZinc:
http://www.hakank.org/minizinc/crossword3/

 In Picat: http://hakank.org/picat/crossword3/

Crossword: Problem #39 21x21 chars (* is a blank)

_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ * _ _ _ _ _ _ _ _ _ _ _ _ _ * _ _ _
_ _ _ _ * _ _ _ _ _ _ _ * _ _ _ * _ _ _ _
_ _ _ _ _ * _ _ _ _ _ * _ _ _ * _ _ _ _ _
_ _ _ _ _ _ * _ _ _ * _ _ _ * _ _ _ _ _ _
* * * _ _ _ _ _ _ * _ _ _ _ _ _ _ _ * * *
_ _ _ _ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _
_ _ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _ _
_ _ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ * _ _ _ _ _ _ _ * _ _ _ _ _ _ _ _
* * * _ _ _ _ _ _ _ _ * _ _ _ _ _ _ * * *
_ _ _ _ _ _ * _ _ _ * _ _ _ * _ _ _ _ _ _
_ _ _ _ _ * _ _ _ * _ _ _ _ _ * _ _ _ _ _
_ _ _ _ * _ _ _ * _ _ _ _ _ _ _ * _ _ _ _
_ _ _ * _ _ _ _ _ _ _ _ _ _ _ _ _ * _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _
_ _ _ _ _ _ _ * _ _ _ _ _ * _ _ _ _ _ _ _

Crossword: Problem #39 Solution (English words)

salmons*imams*corrupt
amoebic*marco*oceania
leonine*pucks*stapler
ask*tenderhearted*erg
bloc*sterile*oat*care
lauri*spicy*cur*corot
entomb*ale*tot*mounts
spears*fruition
prosiest*diurnal*tags
limbers*palsied*merle
averts*arieses*garden
taney*smarter*cartons
else*junkies*sauterne
diapered*berlin
amping*sis*cat*snooze
gains*fit*barth*array
agog*bra*forbear*sane
inn*electioneered*nil
needles*altar*perigee
steuben*beige*evilest
tornado*steed*repasts

Crossword: Problem #39 (Swedish words)

absiden*kosta*avkylas
mikaela*älvor*variant
tvingad*raabe*bringor
mal*skjortlinning*fri
axla*earlens*eda*gödd
nerts*skara*ada*forne
stalin*ass*dra*daddan
asiens*barnbeck
skostans*datafel*ädel
mambons*tidebön*anala
albins*bevarar*monsun
klene*synodal*nyrakad
sard*bestred*multnats
nånstans*bostad
skvimp*ena*dat*anette
tvina*ord*durka*snara
rigg*ren*pianino*agar
yls*betacellulosa*gul
kleresi*allen*ragtime
erlades*slang*aningar
rasmark*herse*knotans

Magic Sequence
Redundant constraints

Reversibility

Redundant constraints
 Sometimes it is possible to add extra –

redundant – constraints which sometimes can
speed things up

 They do not remove any solutions from the “base
model”

 Contrast with symmetry breaking constraints
which also often speed things up, but they
remove solutions

Magic sequence
https://www.csplib.org/Problems/prob019/

 A magic sequence of length N is a sequence of integers
x[0] . . x[N-1] between 0 and N-1,
such that for all i in 0 to N-1, the number i occurs exactly
x[i] times in the sequence.

 For n= 10
 6,2,1,0,0,0,1,0,0,0
is a magic sequence since ‘0’ occurs 6 times, ‘1’ occurs
twice, ‘6’ occurs 1 time (and the rest 0 times)

 This is a self referential sequence

Magic sequence: First model (“direct” encoding)

int: n
array[0..n-1] of var 0..n-1: s;

solve satisfy;

constraint
 forall(i in 0..n-1) (
 s[i] = sum([s[j] = i | j in 0..n-1])
)
;

Quite straightforward: the value of s[i] is the number of occurrences in s which contains the value i.

Magic sequence: Second model, add redundant constraints

int: n
array[0..n-1] of var 0..n-1: s;

solve satisfy;

constraint
 forall(i in 0..n-1) (
 s[i] = sum([s[j] = i | j in 0..n-1])
)
 /\
 sum(s) = n
 /\
 sum(i in 0..n-1) (s[i]*i) = n
;

Adding some ‘redundant’ constraints to speed up the search:
- the sum of s is n
- the sum of s[i]*i is also n

Magic sequence: Third model, using global_cardinality

int: n
array[0..n-1] of var 0..n-1: s;

solve satisfy;

constraint

 global_cardinality(s,array1d(0..n-1, index_set(s)), s)
 /\
 sum(s) = n
 /\
 sum(i in 0..n-1) (s[i]*i) =n
;

Replace the first sum with the global constraint global_cardinality
(a.k.a. global_cardinality_count):
 global_cardinality(a,cover,counts)
where counts[i] is the number of occurrences of cover[i] (here 0..n-1) in array a

Magic sequence: Comparing models (with Gecode solver)

N Model Time (s)

10 model1 0.15s
10 model2 0.08s
10 model3 0.20s

100 model1 0.41s
100 model2 0.40s
100 model3 0.13s

500 model1 17.49s
500 model2 10.45s
500 model3 0.15s

1000 model2 43.05s
1000 model3 0.37s

10000 model3 31.78s

(Removed models which timed out: > 60s)

Reversibility
 A.k.a. bidirectionality, multidirectionality (cf Prolog)
 A decision variable can be input and/or output
 Given the decision variables A, B, and C and

constraint A + B = C
* Known A and B → C
* Known B and C → A
* Known A and C → B
* Known A → Domain reduction in B and C
 (perhaps)

Conclusions/Summary

Conclusions/Summary
Constraint Programming / Modeling

 Powerful
 Is fun
 Can be used to explore combinatorial problems
 A special mindset is required
 Though it’s not a silver bullet. Sometimes special

algorithms might be faster or better suited.

More on CP

References (mine)
 Homepage: http://hakank.org/
 My MiniZinc page: http://hakank.org/minizinc/
 My Picat page: http://hakank.org/picat/
 Common CP models:

http://hakank.org/common_cp_models/
 The Picat book

http://picat-lang.org/picatbook2015.html
(PDF available for free)

http://hakank.org/
http://hakank.org/minizinc/
http://hakank.org/common_cp_models/
http://picat-lang.org/picatbook2015.html

References
 CP/MiniZinc-courses (Coursera):

- Basic Modeling for Discrete Optimization
- Solving Algorithm for Discrete Optimization
- Advanced Modeling for Discrete Optimization

 The NordConsNet site
http://www.it.uu.se/research/NordConsNet
has a lot of information and references on CP and
constraint modeling

http://www.it.uu.se/research/NordConsNet

Some Constraint systems
Some great Constraint systems/solvers (not necessary CP)

 MiniZinc: The system used in this talk
 Google OR-tools (Python, C#, C++): Often very fast (CP-SAT)
 Chuffed (in MiniZinc)
 Gecode (C++)
 Choco, JaCoP (Java)
 CPMPy (Python): high level wrapper around MiniZinc, OR-tools, PySAT and Z3
 Prolog (CLP): SICStus Prolog, ECLiPSe CLP, SWI-Prolog, etc
 Microsoft’s Z3 theorem prover: Many nice features
 Picat - my “Thinking language”

(“Prolog” + constraints + functions and imperative constructs. CP/SAT/SMT/MIP
constraint solvers)

Some CP related conferences
CP 2023

NordConsNet 2023

Conferences
 The 29th International Conference on Principles and

Practice of Constraint Programming (“CP 2023”)
August 27 - 31, 2023, Toronto, Canada
https://cp2023.a4cp.org/index.html

 The Nordic Network for researchers and practitioners
of Constraint programming (NordConsNet)
June 8 – 9, 2023, Odense, Denmark
https://event.sdu.dk/nordconsnet2023/

(See http://www.it.uu.se/research/NordConsNet)

https://event.sdu.dk/nordconsnet2023/
http://www.it.uu.se/research/NordConsNet

Thank you!
Questions?

http://hakank.org/cp_mensa_2023/

Post talk slides
(including quite a few other models)

all_different_except_0
Reification

Reification
“Reasoning” about constraints/boolean variables

 Implication: constraint1 → constraint2
 Equivalence: constraint1 ↔ constraint2
 not
 /\: and
 \/: or
 false: 0, true: 1

all_different_except_0

%
% all_different_except_0(x)
% Ensures that all values that are != 0 are distinct.
%
% Note: This constraint has another definition in the MiniZinc
% distribution.
%
predicate all_different_except_0(array[int] of var int: x) =
 foreach(i, j in index_set(x) where i < j) (
 (x[i] != 0 /\ x[j] != 0) -> x[i] != x[j]
);

Selected publications
 Soto, Kjellerstrand, et.al: Cell formation in group

technology using constraint programming and Boolean
satisfiability (2012)

 Kjellerstrand: Picat: A logic-based multi-paradigm language
(2014)

 Zhou, Kjellerstrand: Solving several planning problems with
Picat (2014)

 Zhou, Kjellerstrand: The Picat-SAT compiler (2016)
 Rohner, Kjellerstrand: Using logic programming for theory

representation and scientific inference (2021)
 And …

Constraint Modeling
This talk focuses on the modeling part and should
really be called

 ”Constraint Modeling -
 Solving combinatorial puzzles when you are lazy”

Important features of CP
 Propagation
 Global constraints
 Reification
 Reversibility
 Symmetry breaking
 Redundant constraints

Debugging in CP
 Test early and often

While learning CP: test after adding each constraint
 Check the domains
 First test a small instance for which you know the

answer
 If the model does not work:

- remove one constraint after another and test again
- check the domains again

Conclusions/Summary
Compared to imperative programming languages:
 There are no (re)assignments: if the model tries to

assign a decision variable with two different values then
it is a failure → backtracks to another possible solution.

 Forall loops are not like imperative for loops; they are
only used to create constraints (in arrays)

 There are no while loops
 Debugging might be harder in CP than in imperative

programming languages.

MiniZinc syntax

Syntax: Parameters/data
 Parameters, fixed data (hints)
int: n=4;
array[1..n] of int: a =[1,2,3,4]; % default 1-based

% When using a specific datafile (.dzn)

% This is in the model (.mzn) file
int: m;
array[1..m] of int: y;

% In the data .dzn file
m = 5;
y = [2,3,4,5,6];

Syntax:Variables / Domains
 Decision variables with an apropriate finite domain (integers,

enums).
 The unknowns that we want to find out the values for.
 Beware: Not like variables in Python, Java, C++, etc.

var bool: b;
array[1..n] of var 1..n: a;

array[1..n, 1..n] of var 1..n: x; % 2d array
var int: z = sum(x);

enum vals = {A,B,C,D};
array[1..3] of var vals: y;

Syntax: Constraints
 Constraints: Connecting decision variables

c = a + b % arithmetic constraint

% Global constraints
all_different(x)
increasing(x) % symmetry breaking
z = x[y] % element constraint

% Reification
x[1] > 10 -> x[2] < 2 % implication
a != 1 <-> b = 1 % equivalence

 include “globals.mzn” % definitions for constraints

Syntax:Solve
 Solving / optimization

% any solution, 1, 2, … all solutions
solve satisfy;

% optimization
solve minimize z; % or solve maximize y;

% search heuristics / labeling
solve::int_search(x,first_fail,indomain_min)
satisfy;

Syntax: Output section
 Output section

output [show(x)];

output [“\(x)\n”];

output [
 “\(i): \(x[i])\n”
 | i in 1..n
]
++
[“\(z)\n”];

Domains
 Domains
var 0..9: a;
array[1..n] of var 0..9: x;

 Restricts the possible values of the decision variable, here the
integers 0..9.

 Used in the solving phase where the current domain is
propagated to the solver and can be reduced by activating
the constraints. We see an example on this soon.

 Try to get the domains as small as possible (but not smaller)

Global constraints
 Special crafted (efficient) algorithms for common types of

constraints, common structures
 Kind of “Patterns” / “Tool of Thought” when modeling
 all_different(x)

Ensure that all values in the array x are distinct
 We will see more global variables in this talk
 Global Constraint Catalog (almost 300 different global

constraints)
https://sofdem.github.io/gccat/gccat/titlepage.html

CP: Overview

 Searches through the complete search space
with intelligence: constraint propagation, domain
reduction, and search heuristics (pruning the
search space)

 Most CP solvers use some smart techique for
searching and pruning the search tree.

CP: The declarative ideal
“Constraint Programming represents one of the
closest approaches computer science has yet
made to the Holy Grail of programming: the user
states the problem, the computer solves it.”

[E. Freuder, “In Pursuit of the Holy Grail”, 1997]

Sudoku: 25x25 problem instance

 11 23 13 10 19 16 6 2 24 7 5 9 1 20 17 15 8 18 25 3 4 12 21 22 14
 15 16 _ 22 _ 11 8 _ _ _ 25 _ 14 _ _ _ 12 19 _ _ 17 _ _ _ _
 _ _ _ _ _ _ _ _ _ _ _ 16 _ 4 _ 17 _ 13 _ 24 _ 23 19 10 2
 _ _ _ _ _ 19 _ 14 23 4 _ 21 6 22 10 _ 11 _ 2 _ _ _ _ _ _
 17 14 _ _ 2 _ _ 13 12 _ _ _ _ _ 15 4 20 22 10 _ 11 _ 9 24 8
 22 _ _ _ _ 6 2 _ _ _ 4 7 12 1 9 _ _ _ _ _ _ 14 5 _ _
 _ 18 2 _ 8 22 _ 19 16 21 _ _ _ 10 13 23 _ _ 20 _ _ 3 _ 15 7
 _ _ 17 3 _ 5 _ _ 8 9 _ _ _ _ 18 _ 19 _ _ _ _ _ 23 21 _
 1 11 _ _ 9 _ 15 10 25 _ 6 _ 23 _ _ _ _ 5 3 7 _ 17 _ _ 24
 _ _ _ _ _ _ 1 _ _ 23 _ _ _ 24 _ _ _ 21 12 _ 6 8 _ 25 16
 20 24 10 _ 15 23 11 17 _ _ _ _ _ 7 _ 12 _ _ _ _ _ 22 _ _ 6
 4 5 _ 14 12 25 _ 18 _ _ 23 _ 15 _ 19 1 _ _ _ 22 20 _ 7 9 _
 18 _ 21 _ _ 8 _ 24 _ _ 9 _ 25 _ _ _ 10 _ _ _ 2 _ 1 19 _
 _ _ 6 2 1 _ 13 _ 22 _ _ _ _ _ 11 8 21 16 _ _ 25 _ _ 12 17
 _ 17 25 _ 23 7 14 _ 21 1 _ _ _ _ 3 _ _ 11 _ _ 24 _ 16 4 5
 _ _ _ _ 11 18 24 _ _ _ _ 5 _ 12 _ 25 _ _ _ 15 23 4 8 14 _
 _ _ _ 15 21 _ _ _ _ _ 2 _ 13 17 _ _ 1 7 _ _ 5 9 24 _ _
 _ _ 18 _ 22 15 _ _ 2 16 _ 23 _ _ _ 10 6 24 _ 17 12 _ 25 11 _
 7 2 _ 1 _ _ 21 _ _ _ 18 22 _ 9 6 14 _ 4 5 16 _ _ _ _ _
 _ _ 9 _ _ _ 7 22 _ _ 10 _ 24 _ _ _ 18 _ _ _ 21 _ _ _ _
 _ 12 _ 19 10 _ _ _ _ _ _ _ _ _ 1 _ _ _ _ _ 14 _ 4 8 _
 24 _ 11 18 _ _ _ _ _ _ _ 25 17 21 _ 6 _ _ 1 _ _ _ _ 5 12
 16 6 22 _ _ _ 23 4 15 18 8 _ _ _ 20 _ _ 17 _ 14 _ _ _ _ _
 _ 21 _ _ 4 _ 9 1 7 _ _ _ _ 11 14 _ 16 8 15 _ 22 _ 18 _ _
 8 15 _ _ _ _ _ _ 5 _ 24 3 _ _ 4 _ _ _ 9 _ _ _ _ _ 20

Sudoku: 25x25 solution (PicatSAT: 0.2s)

 11 23 13 10 19 16 6 2 24 7 5 9 1 20 17 15 8 18 25 3 4 12 21 22 14
 15 16 4 22 18 11 8 21 20 10 25 2 14 13 24 7 12 19 23 9 17 5 6 1 3
 21 1 5 20 25 3 18 15 9 22 11 16 8 4 12 17 14 13 6 24 7 23 19 10 2
 3 8 12 9 24 19 17 14 23 4 7 21 6 22 10 16 11 1 2 5 15 18 20 13 25
 17 14 7 6 2 1 5 13 12 25 3 18 19 23 15 4 20 22 10 21 11 16 9 24 8
 22 19 23 21 13 6 2 3 17 24 4 7 12 1 9 11 15 25 16 8 18 14 5 20 10
 25 18 2 24 8 22 4 19 16 21 14 11 5 10 13 23 17 6 20 1 9 3 12 15 7
 6 10 17 3 16 5 12 7 8 9 15 20 2 25 18 22 19 14 24 13 1 11 23 21 4
 1 11 14 12 9 20 15 10 25 13 6 8 23 16 21 18 4 5 3 7 19 17 22 2 24
 5 20 15 4 7 14 1 11 18 23 17 19 3 24 22 9 2 21 12 10 6 8 13 25 16
 20 24 10 13 15 23 11 17 19 3 21 1 16 7 2 12 5 9 4 25 8 22 14 18 6
 4 5 16 14 12 25 10 18 6 2 23 13 15 8 19 1 24 3 17 22 20 21 7 9 11
 18 22 21 11 3 8 16 24 4 12 9 17 25 14 5 20 10 15 7 6 2 13 1 19 23
 19 7 6 2 1 9 13 5 22 15 20 24 4 18 11 8 21 16 14 23 25 10 3 12 17
 9 17 25 8 23 7 14 20 21 1 12 10 22 6 3 2 13 11 19 18 24 15 16 4 5
 10 13 19 16 11 18 24 6 3 17 1 5 20 12 7 25 9 2 21 15 23 4 8 14 22
 12 25 8 15 21 10 19 23 14 11 2 4 13 17 16 3 1 7 22 20 5 9 24 6 18
 14 4 18 5 22 15 20 9 2 16 19 23 21 3 8 10 6 24 13 17 12 7 25 11 1
 7 2 24 1 20 12 21 25 13 8 18 22 11 9 6 14 23 4 5 16 10 19 17 3 15
 23 3 9 17 6 4 7 22 1 5 10 14 24 15 25 19 18 12 8 11 21 20 2 16 13
 13 12 20 19 10 17 3 16 11 6 22 15 7 5 1 21 25 23 18 2 14 24 4 8 9
 24 9 11 18 14 13 22 8 10 19 16 25 17 21 23 6 7 20 1 4 3 2 15 5 12
 16 6 22 25 5 2 23 4 15 18 8 12 9 19 20 24 3 17 11 14 13 1 10 7 21
 2 21 3 23 4 24 9 1 7 20 13 6 10 11 14 5 16 8 15 12 22 25 18 17 19
 8 15 1 7 17 21 25 12 5 14 24 3 18 2 4 13 22 10 9 19 16 6 11 23 20

Minesweeper
Reversibility

Minesweeper
Minesweeper – in this version – is a simple grid problem:

..2.3.

2.....

..24.3

1.34..

.....3

.3.3..

Each number represents how many bombs there are in the 8 nearby cells.

The “.” (dot) represents an unknown cell: either a bomb or not bomb.

Where are the bombs?

Minesweeper

..2.3.
2.....

..24.3

1.34..

.....3

.3.3..

For the green cell, ensure that there are exactly 4 bombs among the 8
(vertical, horizontal, diagonal) neighbours.

A cell with a hint can not be a bomb.

Minesweeper: The setup, parameters and decision variables

% >= 0 for number of mines in the Moore neighbourhood
% (vertical, horizontal, and diagonal neighbours)
array[1..r, 1..c] of -1..8: game; % the hints

% decision variables: 0/1 for no bomb/bomb
array[1..r, 1..c] of var 0..1: mines;

% the hints
int: X = -1; % representing the unknowns in the hints
int: r = 6; % rows
int: c = 6; % column
game = array2d(1..r, 1..c, [
 X,X,2,X,3,X,
 2,X,X,X,X,X,
 X,X,2,4,X,3,
 1,X,3,4,X,X,
 X,X,X,X,X,3,
 X,3,X,3,X,X,
]);

Minesweeper: Constraints

% game[1..n, 1..n]: the given hints
% mines[1..n, 1..n]: 0/1 where 1 represent a bomb
% X: -1 represents the unknown
constraint
 forall(i in 1..r, j in 1..c) (
 % If the cell contains a hint
 if game[i,j] > X then
 % the number in the hint is the number
 % of all the surrounded bombs
 game[i,j] = sum(a,b in {-1,0,1} where
 i+a in 1..r /\
 j+b in 1..c /\
 (a != 0 \/ b != 0)
) (mines[i+a,j+b])

 /\ % if a hint, then it can't be a bomb
 mines[i,j] = 0

 endif

);

Minesweeper: Solution

 ..2.3.
 2.....
 ..24.3
 1.34..
 3
 .3.3..

 100001 % 1: Bomb, 0: no bomb
 010110
 000010
 000010
 011100
 100011

Magic squares: solution for 15x15 (0.7s with Gecode)

 107 55 213 186 21 140 171 147 114 204 80 49 81 30 97
 57 73 44 126 88 154 12 28 35 225 104 200 185 166 198
 144 224 90 141 219 153 212 170 217 14 17 3 11 46 34
 207 60 158 211 134 45 129 161 61 65 184 102 95 19 64
 31 210 117 190 111 131 75 105 4 223 127 115 146 86 24
 193 23 139 125 197 196 50 29 222 62 32 214 179 8 26
 172 167 175 40 59 176 128 9 165 188 178 37 77 122 2
 206 74 13 84 174 116 162 6 203 71 132 83 218 110 43
 112 91 48 87 163 157 56 143 180 47 138 195 135 67 76
 7 216 53 189 89 191 106 183 78 68 164 79 22 41 209
 70 208 98 93 96 20 16 169 5 159 42 155 182 181 201
 103 94 160 168 149 99 123 151 100 15 66 25 85 221 136
 119 38 187 1 69 51 192 101 121 142 124 173 33 194 150
 58 152 52 18 54 39 145 156 108 120 177 63 133 205 215
 109 10 148 36 72 27 118 137 82 92 130 202 113 199 220

Furniture moving: Solution for minimize num_persons

% One optimal solution of many
num_persons: 3
resources : [3, 1, 3, 2]
start_times: [70, 23, 55, 40]
durations : [30, 10, 15, 15]
end_times : [100, 33, 70, 55]
end_time : 100

==========

At least 3 people are needed.
- first start time: 23 !
- end_time: 100 !

Can we do better?
a) First start time = 0
b) Better end_time?

Multi-objective
 In many applications there can be more than one

objective, such as
- minimize the resources AND
- minimize the end time
This is called multi-objective.

 Alas, MiniZinc does not supports this directly
 One approach is to combine different objectives

XKCD problem #287
subset sum

XKCD #287
From http://xkcd.com/287

XKCD #287: Problem
P: We'd like exactly $15.05 worth of appetizers,
please.

Waiter: ... exactly? Ummm..

P: Here'm these papers on the Knapsack problem
might help you out

Waiter: Listen, I have six other tables to get
to -

P: ... as fast as possible, of course. Want
something on Traveling Salesman?

XKCD #287
Appetizers

Mixed Fruit 2.15

French Fries 2.75

Side Salad 3.35

Hot Wings 3.55

Mozarella Sticks 4.20

Sampler Plate 5.80

Since we are using finite domain,
we multiply all values with 100:
215, 275, 335, 355, 420, 580.

And the total 15.05: 1505

Subset sum
 This is actually a subset sum problem (not

Traveling Salesperson Problem, TSP)
 Given a list of values and a target, find all the

values that sums to target.
 Subset sum is NP complete, i.e. there’s no

general algorithm that can solve arbitrary
problems in polynomial time.
Which does not mean that it’s impossible to solve
some of these problems, even large problems.

XKCD #287: Model

% parameters
int: num_appetizers;
array[1..num_appetizers] of int: price;
int: total;

% decision variables
array[1..num_appetizers] of var 0..100000: x; % items of each dish

constraint total = sum(i in 1..num_appetizers) (x[i]*price[i]);

solve satisfy;

% data
num_appetizers = 6;
% Multiply by 100 → integers
price = [215, 275, 335, 355, 420, 580];
total = 1505;

XKCD #287: Output

x = [7, 0, 0, 0, 0, 0];

x = [1, 0, 0, 2, 0, 1];

==========

XKCD problem #287
subset sum + optimization

Minimize number of dishes
 Here is a variant of the original problem
 Minimize the number of dishes

XKCD #287: Model minimizing the number of dishes

int: num_appetizers;
array[1..num_appetizers] of int: price;
int: total;

array[1..num_appetizers] of var 0..100000: x; % items of each dish
var int: z = sum(x); % sum of the number of dishes

solve minimize z;

constraint total = sum(i in 1..num_prices) (x[i]*price[i]);

num_appetizers = 6;
price = [215, 275, 335, 355, 420, 580]; % Multiply by 100 → integers
total = 1505;

output [“z: \(z)\nx: \(x)\n”];

XKCD #287: Model minimizing the number of dishes, output

x: [1, 0, 0, 2, 0, 1]
z: 4

==========

% With the ‘fancy’ output
z: 4
Mixed Fruit : 1 ($2.15)
Hot Wings : 2 ($7.10)
Sampler Plate : 1 ($5.80)

==========

XKCD #287: Fancy output

% …
array[1..num_appetizers] of string: name;
% …

name = ["Mixed Fruit","French Fries","Side Salad",
 "Hot Wings","Mozarella Sticks","Sampler Plate"];
output[
 if fix(x[i]) > 0 then
 name[i] ++ "\t: \(x[i]) ($" ++ show_float(3,2,x[i]*price[i]/100) ++ ")\n"
 endif
 | i in 1..num_appetizers
];

XKCD #287: Fancy output

Mixed Fruit : 7 ($15.05)

Mixed Fruit : 1 ($2.15)
Hot Wings : 2 ($7.10)
Sampler Plate : 1 ($5.80)

==========

Monks and doors
Reification

Reification
“Reasoning” about constraints/boolean variables

 Implication: constraint1 → constraint2
 Equivalence: constraint1 ↔ constraint2
 not
 /\: and
 \/: or
 false: 0, true: 1

Monks and doors
There is a room with four doors and eight monks. One of the doors is an exit. Each
monk is either telling a lie or the truth. The monks make the following statements:

Monk 1: Door A is the exit.

Monk 2: At least one of the doors B and C is the exit.

Monk 3: Monk 1 and Monk 2 are telling the truth.

Monk 4: Doors A and B are both exits.

Monk 5: Doors A and B are both exits.

Monk 6: Either Monk 4 or Monk 5 is telling the truth.

Monk 7: If Monk 3 is telling the truth, so is Monk 6.

Monk 8: If Monk 7 and Monk 8 are telling the truth, so is Monk 1.

Which door is an exit and what monk(s) are telling the truth?

Monks and doors: Parameters and decision variables

enum doors = {A,B,C,D};
int: num_monks = 8;
% Decision variables
array[doors] of var bool: Door;
array[1..num_monks] of var bool: M;

solve satisfy;

Monks and doors: Constraints (1/2)

Constraint

 % Monk 1: Door A is the exit.
 (M[1] <-> Door[A]) /\

 % Monk 2: At least one of the doors B and C is the exit.
 (M[2] <-> (Door[B] \/ Door[C]) /\

 % Monk 3: Monk 1 and Monk 2 are telling the truth.
 (M[3] <-> (M[1] /\ M[2])) /\

 % Monk 4: Doors A and B are both exits.
 (M[4] <-> (Door[A] /\ Door[B])) /\

 % Monk 5: Doors A and C are both exits.
 (M[5] <-> (Door[A] /\ Door[C])).

Monks and doors: Constraints (2/2)

constraint

 % Monk 6: Either Monk 4 or Monk 5 is telling the truth.
 (M[6] <-> (M[4] \/ M[5])) /\

 % Monk 7: If Monk 3 is telling the truth, so is Monk 6.
 (M[7] <-> (M[3] -> M[6])) /\

 % Monk 8: If Monk 7 and Monk 8 are telling the truth, so is Monk 1.
 (M[8] <-> ((M[7] /\ M[8]) -> M[1])) /\

 % Exactly one door is an exit.
 sum(Door) = 1;

Monks and doors: Solution

door: A B C D
 [true, false, false, false]
monk: 1 2 3 4 5 6 7 8
 [true, false, false, false, false, false, true, true]

==========

Door A the exist door.
Monks 1, 7, and 8 are telling the truth.

Broken weights
Bachet’s weighing problem

Broken weights
 A merchant had a forty pound measuring weight that

broke into four pieces as the result of a fall. When the
pieces were subsequently weighed, it was found that the
weight of each piece was a whole number of pounds and
that the four pieces could be used to weigh every
integral weight between 1 and 40 pounds. What were
the weights of the pieces?

(Bachet, 1612)
 Assume a balance scale

with two pans.

Source: Wikipedia

Broken weights
 In short: Using 4 weights that sum to 40, how can

we measure each value 1..40 using a balance
scale?

 What are the parameters?
 What are the decision variables and domains?
 How to represent the balance scale?
 What are the constraints?

Broken weights: Parameters, decision variables

int: n = 4; % the number of different weights
int: m = 40; % original/total weight

array[1..n] of var 1..m: weights; % the weights
% The combinations:
% -1: left side, 1: right side, 0: not used
array[1..m, 1..n] of var -1..1: x;

solve satisfy;

Broken weights: Constraints

constraint
 sum(weights) = m

 /\ % Ensure that all weights from 1 to 40 (m) can be made.
 forall(w in 1..m) (
 sum([x[w,i]*weights[i] | i in 1..n]) = w
)

 % symmetry breaking
 /\ increasing(weights);

Broken weights: Solution

W: 1 3 9 27 % The weights
 1: 1 0 0 0
 2: -1 1 0 0 % 1 pound in left, 3 pound in right: 3 – 1 = 2
 3: 0 1 0 0
 4: 1 1 0 0
 5: -1 -1 1 0
 6: 0 -1 1 0
 7: 1 -1 1 0
 8: -1 0 1 0
 9: 0 0 1 0
...
32: -1 -1 1 1
33: 0 -1 1 1 % 3 in left, 9 and 27 in right: 27+9-3=33
34: 1 -1 1 1
35: -1 0 1 1
36: 0 0 1 1
37: 1 0 1 1
38: -1 1 1 1
39: 0 1 1 1
40: 1 1 1 1

==========

Zebra puzzle
“Einstein puzzle type”

Predicates

Zebra puzzle
 1. There are five houses, each of a different color and

inhabited by men of different nationalities, with different
pets, drinks, and cigarettes.

 2. The Englishman lives in the red house.
 3. The Spaniard owns the dog.
 4. Coffee is drunk in the green house.
 ...
 15. The Norwegian lives next to the blue house.
 Who drinks water? And who owns the zebra?

Zebra puzzle: Full problem statement

 1. There are five houses, each of a different color and inhabited by
 men of different nationalities, with different pets, drinks,
 and cigarettes.
 2. The Englishman lives in the red house.
 3. The Spaniard owns the dog.
 4. Coffee is drunk in the green house.
 5. The Ukrainian drinks tea.
 6. The green house is immediately to the right of the ivory house.
 7. The Old Gold smoker owns snails.
 8. Kools are smoked in the yellow house.
 9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house on the left.
11. The man who smokes Chesterfields lives in the house next to the
 man with the fox.
12. Kools are smoked in the house next to the house where the horse is

 kept.
13. The Lucky Strike smoker drinks orange juice.
14. The Japanese smoke Parliaments.
15. The Norwegian lives next to the blue house.
NOW, who drinks water? And who owns the zebra?

Zebra puzzle: The setup, including helper predicates

enum Nationalities= {English,Spanish,Ukrainian,Norwegian,Japanese};
enum Colours = {Red,Green,Ivory,Yellow,Blue};
enum Animals = {Dog,Fox,Horse,Zebra,Snails};
enum Drinks = {Coffee,Tea,Milk,OrangeJuice,Water};
enum Cigarettes = {OldGold,Kools,Chesterfields,LuckyStrike,Parliaments};
set of int: Houses= 1..5;

array[Nationalities] of var Houses: nation;
array[Colours] of var Houses: colour;
array[Animals] of var Houses: animal;
array[Drinks] of var Houses: drink;
array[Cigarettes] of var Houses: smoke;

% Helper predicates
predicate nextto(var Houses:h1, var Houses:h2) =
 h1 == h2 + 1 \/ h2 == h1 + 1; % or abs(h1-h2) = 1
predicate rightof(var Houses:h1, var Houses:h2) = h1 == h2 + 1;
predicate middle(var Houses:h) = h == 3;
predicate left(var Houses:h) = h = 1;

Zebra puzzle: Constraints (full)

constraint
all_different(nation) /\ all_different(colour) /\
all_different(animal) /\ all_different(drink) /\
all_different(smoke) /\
nation[English] = colour[Red] /\ % 2
nation[Spanish] = animal[Dog] /\ % 3
drink[Coffee] = colour[Green] /\ % 4

 nation[Ukrainian] = drink[Tea] /\ % 5
 rightof(colour[Green], colour[Ivory]) /\ % 6
 smoke[OldGold] = animal[Snails] /\ % 7
 smoke[Kools] = colour[Yellow] /\ % 8
 middle(drink[Milk]) /\ % 9
 left(nation[Norwegian]) /\ % 10
 nextto(smoke[Chesterfields], animal[Fox]) /\ % 11
 nextto(smoke[Kools], animal[Horse]) /\ % 12
 smoke[LuckyStrike] = drink[OrangeJuice] /\ % 13
 nation[Japanese] = smoke[Parliaments] /\ % 14
 nextto(nation[Norwegian], colour[Blue]); % 15

solve satisfy;

Zebra puzzle: Constraints (selected)

constraint
 % ...
 % 2. The Englishman lives in the red house.
 nation[English] = colour[Red] /\
 % ...

 % 6. The green house is immediately to the right
 % of the ivory house.
 rightof(colour[Green], colour[Ivory]) /\
 % ...

 % 9. Milk is drunk in the middle house.
 middle(drink[Milk]) /\
 % ...

 % 10. The Norwegian lives in the first house on the left.
 left(nation[Norwegian]) /\

 % ...

Zebra: solution

nation=[English:3, Spanish:4, Ukrainian:2, Norwegian:1, Japanese:5];
colour=[Red:3, Green:5, Ivory:4, Yellow:1, Blue:2];
animal=[Dog:4, Fox:1, Horse:2, Zebra:5, Snails:3];
Drink =[Coffee:5, Tea:2, Milk: 3, OrangeJuice: 4, Water:1];
Smoke =[OldGold:3, Kools:1, Chesterfields:2, LuckyStrike:4, Parliaments:5];

==========

% The Norwegian drinks water: Drink Water = 1 → Nation 1 = Norwegian
% The Japanese owns the Zebra: Animal Zebra = 5 → Nation 5 = Japanese

Langford’s number problem
Element, Symmetry breaking

Langford’s number problem
Langford's number problem (CSP lib problem 24)

http://www.csplib.org/prob/prob024/

http://www.dialectrix.com/langford.html
 Arrange 2 sets of positive integers 1..k to a sequence, such

that, following the first occurence of an integer i, each
subsequent occurrence of i, appears i+1 indices later than the
last.
For example, for k=4, a solution would be 41312432

 K=12: 1,9,1,8,3,12,10,11,3,4,5,9,8,7,4,6,5,10,12,11,2,7,6,2
 Only for k mod 4 == 0 or k mod 4 == 3

Langford’s number problem
Two decision variables:

 Positions: for each index in 1..k: each subsequent
occurrence of i, appears i+1 indices later than the
last

 Solution: Place the (two) i’s in the assigned
positions

Langford’s problem: The model

int: k = 4;
set of int: pos_domain = 1..2*k; % domain of the positions
array[pos_domain] of var pos_domain: pos; % the positions
array[pos_domain] of var 1..k: sol; % the solution

constraint
 forall(i in 1..k) (
 % positions:
 % “each subsequent occurrence of i, appears i+1 indices
 % later than the last”
 pos[i+k] = pos[i] + i+1 /\
 all_different(pos) /\

 % solution: the values in pos[i] and pos[k+i] should both
 % have the value i
 sol[pos[i]] = i /\ % element
 sol[pos[k+i]] = i % element
)
 % symmetry breaking
 /\ sol[1] < sol[2*k]
;

Langford’s problem: Element

% ...
constraint
 forall(i in 1..k) (
 pos[i+k] = pos[i] + i+1 /\
 sol[pos[i]] = i /\ % element
 sol[pos[k+i]] = i % element
)
 % ...
;

Ensure that for the two positions pos[i] and pos[k+i] (with k indices
apart), the solution (sol) in these positions should both have the
value of i.

Langford’s problem: Solution (k=4)

position: [5, 1, 2, 3, 7, 4, 6, 8]
solution: [2, 3, 4, 2, 1, 3, 1, 4]

==========

Langford’s problem: Solution (k=4)

% 1 2 3 4 1 2 3 4
position: [5, 1, 2, 3, 7, 4, 6, 8]
solution: [2, 3, 4, 2, 1, 3, 1, 4]

==========

pos[1] = 5 → sol[5] = 1
pos[2] = 1 → sol[1] = 2
pos[3] = 2 → sol[2] = 3
pos[4] = 3 → sol[3] = 4

% pos[i+k] = pos[i] + i+1
pos[1+4=5] = 7 (5+1+1) → sol[7] = 1
pos[2+4=6] = 4 (1+2+1) → sol[4] = 2
pos[3+4=7] = 6 (2+3+1) → sol[6] = 3
pos[4+4=8] = 8 (3+4+1) → sol[8] = 4

% sol[pos[i]] = i
% sol[pos[i+k]] = i

Element constraint
 One of the most common and powerful constraint
 Z = X[Y]

where X is an array of decision variables , Y and Z
are decision variables.

 Given X and Z → Y (reversibility)
 Given pairs of Zs and Ys → X
 2D arrays: V = X[Y,Z]
 In other CP systems: element(Y,X,Z)

Symmetry breaking
 Pruning symmetric solutions can speed up the solve time.
 For n=4, there are two symmetric solutions and we

remove one of them

sol[1] < sol[2*k]
 solution: [2, 3, 4, 2, 1, 3, 1, 4]

solution: [4, 1, 3, 1, 2, 4, 3, 2] This is removed
 Global constraints for symmetry breaking: increasing,

decreasing, lex_lt, lex2, all_different_except_0,
value_precede_chain

Langford’s problem
generalized

Langford: generalized
Langford's number problem (CSP lib problem 24)

http://www.csplib.org/prob/prob024/

http://www.dialectrix.com/langford.html

Generalized version:

The problem generalizes to the L(k,n) problem, which is to arrange k sets of numbers 1 to n,

so that each appearance of the number m is m numbers on from the last.

For example, the L(3,9) problem is to arrange 3 sets of the numbers 1 to 9 so that the

first two 1’s and the second two 1’s appear one number apart, the first two 2’s and the

second two 2’s appear two numbers apart, etc.

For L(3,n) there is only a solution if n mod 9 = (0,1,8)

Example: L(3,9):

1, 9, 1, 2, 1, 8, 2, 4, 6, 2, 7, 9, 4, 5, 8, 6, 3, 4, 7, 5, 3, 9, 6, 8, 3, 5, 7

http://www.csplib.org/prob/prob024/
http://www.dialectrix.com/langford.html

Langford problem - generalized: Model

int: n; % 1..n: the numbers to place
int: k; % number of occurrences of each number
array[1..k*n] of var 1..n: sol; % solution
array[1..k*n] of var 1..k*n: pos; % positions

solve satisfy;

constraint
 all_different(pos) /\
 forall(i in 1..n) (
 let {
 % temporary decision variable: the possible index
 var 1..k*n - ((k-1)*i): j;
 } in
 forall(c in 0..k-1) (
 sol[j+(i*c)+c] = i /\
 pos[(i-1)*k+c+1] = j+(i*c)+c
)
)
 /\ global_cardinality(sol, [i | i in 1..n], [k | i in 1..n])
 /\ sol[1] < sol[k*n];

Hidato grid puzzle
Temporary decision variables

Hidato grid puzzle
 http://www.hidato.com/
 Given a grid of Rows x Cols with some pre-filled

numbers, including 1 and Rows*Cols (first and
last).

 Place all numbers 1..Rows*Cols such that
adjacent numbers touch each other horizontally,
vertically, or diagonally.

http://www.hidato.com/

Hidato: Problem instance (0s are the unknowns)

% http://www.hidato.com/ Problem 188 (Genius)
r = 12;
puzzle = array2d(1..r, 1..c,
 [
 0, 0,134, 2, 4, 0, 0, 0, 0, 0, 0, 0,
 136, 0, 0, 1, 0, 5, 6, 10,115,106, 0, 0,
 139, 0, 0,124, 0,122,117, 0, 0,107, 0, 0,
 0,131,126, 0,123, 0, 0, 12, 0, 0, 0,103,
 0, 0,144, 0, 0, 0, 0, 0, 14, 0, 99,101,
 0, 0,129, 0, 23, 21, 0, 16, 65, 97, 96, 0,
 30, 29, 25, 0, 0, 19, 0, 0, 0, 66, 94, 0,
 32, 0, 0, 27, 57, 59, 60, 0, 0, 0, 0, 92,
 0, 40, 42, 0, 56, 58, 0, 0, 72, 0, 0, 0,
 0, 39, 0, 0, 0, 0, 78, 73, 71, 85, 69, 0,
 35, 0, 0, 46, 53, 0, 0, 0, 80, 84, 0, 0,
 36, 0, 45, 0, 0, 52, 51, 0, 0, 0, 0, 88,
]);

http://www.hidato.com/

Hidato: Model

% ...
constraint
 % all distinct integers from 1..r*c
 all_different(x) /\

 % place the hints
 forall(i in 1..r, j in 1..c) (
 if puzzle[i,j] > 0 then x[i,j] = puzzle[i,j] endif
) /\

 % identify all k’s (1..r*c)
 forall(k in 1..r*c-1) (
 let {
 % temporary decision variables
 var 1..r: i, var 1..c: j, var {-1,0,1}: a, var {-1,0,1}: b
 } in
 k = x[i, j] /\ % fix this k
 i+a >= 1 /\ j+b >= 1 /\ i+a <= r /\ j+b <= c % inside the grid
 /\ not(a = 0 /\ b = 0) /\
 k + 1 = x[i+a, j+b] % find the next k
)

Hidato: Solution

137 135 134 2 4 7 8 9 114 113 112 111
136 138 133 1 3 5 6 10 115 106 105 110
139 132 125 124 121 122 117 116 11 107 109 104
140 131 126 127 123 120 118 12 13 108 102 103
141 130 144 128 22 119 17 15 14 98 99 101
142 143 129 24 23 21 18 16 65 97 96 100
 30 29 25 26 20 19 61 62 64 66 94 95
 32 31 28 27 57 59 60 75 63 67 93 92
 33 40 42 55 56 58 76 74 72 70 68 91
 34 39 41 43 54 77 78 73 71 85 69 90
 35 38 44 46 53 49 50 79 80 84 86 89
 36 37 45 47 48 52 51 81 82 83 87 88

Traveling Salesperson Problem (TSP)
Circuit constraint

TSP
 Basic problem description (from Wikipedia):

”””
Given a list of cities and the distances between
each pair of cities, what is the shortest possible
route that visits each city exactly once and
returns to the origin city?
”””

 There are many variants on this problem, but let’s
keep it simple.

Global constraint circuit
 Given a list of integers (representing the cities), the circuit constraint shows what

city (node) should be visited next.
 For 4 cities the circuit

 [2,4,1,3]

means
 City 1 → City 2
 City 2 → City 4
 City 3 → City 1
 City 4 → City 3

 The constraint assumes that we start at city 1
 The path is thus 1 → 2 → 4 → 3 → 1

Note: The circuit constraint does not show the path directly.

TSP: Data (distance between the cities)

n = 7;
distances = array2d(1..n, 1..n,
[
 0, 4, 8,10, 7,14,15,
 4, 0, 7, 7,10,12, 5,
 8, 7, 0, 4, 6, 8,10,
 10, 7, 4, 0, 2, 5, 8,
 7,10, 6, 2, 0, 6, 7,
 14,12, 8, 5, 6, 0, 5,
 15, 5,10, 8, 7, 5, 0,
]);

% From Ulf Nilsson
% “Transparencies for the course TDDD08 Logic Programming”

TSP: The setup

int: n; % number of cities

array[1..n, 1..n] of int: distances; % distance matrix
% domains for d, the distances of the travelled path
int: min_val = min([distances[i,j] | i,j in 1..n where distances[i,j] > 0]);
int: max_val = max([distances[i,j] | i,j in 1..n]);

% decision variabls
array[1..n] of var 1..n: x; % the circuit
array[1..n] of var 1..n: p; % the path
array[1..n] of var min_val..max_val: d; % the distances for the path
var int: distance = sum(d); % total distance (to be minimized)

solve minimize distance;

circuit_path constraint
 Since the circuit constraint does not show the path,

let’s write a decomposition for converting a circuit to
a path.

 circuit_path(circuit, path)
Converts the information in circuit into a path.

 The path [2,4,3,1] represents the path
1 → 2 → 4 → 3 → 1

 We always assume that city 1 is visted first (and
last).

TSP: The circuit_path(circuit,path) decomposition

%
% circuit_path(x,p)
% Ensures that x is a circuit and that p is a path for that circuit
%
predicate circuit_path(array[int] of var int: x,
 array[int] of var int: p) =
 let {
 int: len = length(x)
 } in
 circuit(x) /\
 all_different(p) /\

 % always starts the path at city 1
 p[1] = x[1] /\ % start at city 1
 p[len] = 1 /\ % back to city 1
 forall(i in 2..len) (
 p[i] = x[p[i-1]] % connection between city i and the next city
)
;

TSP: Constraints

constraint
 circuit_path(x,p)
 /\
 % d[i] is the distance for the ith visited city:
 % the distance between the city i and the next city x[i]
 % (again, the element constraint is used)
 forall(i in 1..n) (
 distances[i,x[i]] = d[i]
)
;

TSP: Solution

% 1 2 3 4 5 6 7
x: [2, 7, 1, 3, 4, 5, 6] % The circuit
p: [2, 7, 6, 5, 4, 3, 1] % The path
dist: 34

The path is thus:
1 → 2
2 → 7
7 → 6
6 → 5
5 → 4
4 → 3
3 → 1 (back to city 1)

Code golfing

Code golfing
From http://codegolf.stackexchange.com/questions/8429/can-you-golf-golf/

You are required to generate a random 18-hole golf course.

Example output:

[3 4 3 5 5 4 4 4 5 3 3 4 4 3 4 5 5 4]

Rules:

- Your program must output a list of hole lengths for exactly 18 holes

- Each hole must have a length of 3, 4 or 5

- The hole lengths must add up to 72 for the entire course

- Your program must be able to produce every possible hole configuration
with some non-zero-probability (the probabilities of each configuration
need not be equal, but feel free to claim extra kudos if this is the case)

Code golfing

% The complete model:
array[1..18]of var 3..5:x;constraint sum(x)=72

Run with
$ minizinc 18_hole_golf.mzn -a -s
x = [3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5];

x = [3, 3, 4, 3, 3, 3, 3, 4, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5];

x = [3, 3, 4, 3, 4, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5];

x = [3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5];

x = [3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5];

...

% Number of solutions: 44152809
% Time : 23min01.36s

Smullyan’s Knights and Knaves
reification

Knights and Knaves
 From Raymond Smullyan’s excellent

“What is the name of this book?”
 A knight always tells the truth
 A knave always lies
 “Liar paradox”:

- A knave cannot say “I’m lying” (‘cause it’s true)
- A knight cannot say “I’m lying” (‘cause it’s false)

Knights and Knaves: #26
 Problem #26:

B says: A says he is a knave
C says: B is a knave
What are B and C?

Knights and Knaves: Problem #26 - model

% a knight alway tells the truth
% a knave always lies
enum P = {knight,knave};
var P: A; var P: B; var P: C;

% says(kind of person, what the person say: a boolean)
predicate says(var P: kind, var bool: says) =
 (kind = knight <-> says = true)
 /\
 (kind = knave <-> says = false)
;

solve satisfy;
constraint
 % B: A says he is a knave
 says(B, says(A, A = knave))
 /\
 % C: B is a knave
 says(C, B = knave)
;

Knights and Knaves: Problem #26 - solution

Problem #26:
B: A says he is a knave
C: B is a knave

There are two solutions:
p: [knave, knave, knight]
p: [knight, knave, knight]

Which means that
A is unknown (either a knave or knight)
B is a knave (lying)
C is a knight (telling the truth)

Manual reasoning:
* B is lying since it’s impossible that A says he’s a knave
 → B is a knave
* And since B is lying (is a knave)
 then C is telling the truth
 → C is a knight.

Knights and Knaves: Alternative definition using \/ and /\

Instead of <-> (and /\) we can use /\ (and \/).

predicate says(var P: kind, var bool: says) =
 (kind = knight /\ says = true)
 \/
 (kind = knave /\ says = false)
;

N-queens problem
different encodings

N-queens problem
 Place N queens on a NxN chess board such that

no queens attack each other.
 Here we see some different encodings:

- simple version
- using all_different
- using a 0/1 grid

 For the first two, an 1d array is used representing
the N rows.

N-queens problem (n=8)
6 4 7 1 3 5 2 8

. Q . . row 1, col 6

. . . Q row 2 col 4

. Q . row 3 col 7

Q row 4 col 1

. . Q row 5 col 3

. . . . Q . . . row 6 col 5

. Q row 7 col 2

. Q row 8 col 8

Different encodings
 A problem can often be modeled in different ways

using different views of representations, etc.
 The best/good model might depend on the

strengths of the used solver.
 For SAT/MIP solvers a model using 0/1 (boolean)

variables can be quite fast, but not always

N-queens: Simple model

int: n;

array [1..n] of var 1..n: q;
constraint
 forall (i in 1..n, j in i+1..n) (
 q[i] != q[j] /\ % different rows
 q[i] + i != q[j] + j /\ % different / diagonals
 q[i] - i != q[j] – j % different \ diagonals
);

solve satisfy;

N-queens: Using all_different

int: n;

array [1..n] of var 1..n: q;
constraint
 % Rows are different
 all_different(q) /\

 % "/" diagonals are different
 all_different([q[i]+i | i in 1..n]) /\

 % "\" diagonals are different
 all_different([q[i]-i | i in 1..n])
;

solve satisfy;

N-queens: 0/1 variables on a NxN grid

int: n;
array[1..n,1..n] of var 0..1: q;
var int: obj = sum(i,j in 1..n) (q[i,j]);
constraint
 % one queen per row
 forall(i in 1..n) (sum(j in 1..n) (x[i,j]) = 1) /\

 % one queen per column
 forall(j in 1..n) (sum(i in 1..n) (x[i,j]) = 1) /\

 % at most one queen can be placed in each "/"-diagonal
 forall(k in 2-n..n-2) (
 sum(i,j in 1..n where i-j == k) (x[i,j]) <= 1
) /\
 % at most one queen can be placed in each "\"-diagonal
 forall(k in 3..n+n-1) (
 sum(i,j in 1..n where i+j == k) (x[i,j]) <= 1
)
 /\ obj = n;

N-queens: Number of solutions

N Number of solutions

 0 1
 1 1
 2 0
 3 0
 4 2
 5 10
 6 4
 7 40
 8 92
 9 352
10 724
11 2680
12 14200
13 73712
14 365596
15 2279184

[1,1,0,0,2,10,4,40,92,352,724,2680,14200,73712,365596,2279184]

Number of solutions: OEIS
 Online Encyclopedia of Integer Sequences: https://oeis.org/

 https://oeis.org/A000170
”””
A000170 Number of ways of placing n nonattacking queens on an n
X n board.
1, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724, 2680, 14200, 73712, 365596,
2279184, 14772512, 95815104, 666090624, 4968057848,
39029188884, 314666222712, 2691008701644, 24233937684440,
227514171973736, 2207893435808352, 22317699616364044,
234907967154122528
”””

https://oeis.org/A000170

Magic sequence: Is there a pattern in the solutions?

 N Solution
 --
 4: [1,2,1,0]
 5: [2,1,2,0,0]
 6: no solution
 7: [3,2,1,1,0,0,0]
 8: [4,2,1,0,1,0,0,0]
 9: [5,2,1,0,0,1,0,0,0]
10: [6,2,1,0,0,0,1,0,0,0]
11: [7,2,1,0,0,0,0,1,0,0,0]
12: [8,2,1,0,0,0,0,0,1,0,0,0]
13: [9,2,1,0,0,0,0,0,0,1,0,0,0]
14: [10,2,1,0,0,0,0,0,0,0,1,0,0,0]
15: [11,2,1,0,0,0,0,0,0,0,0,1,0,0,0]
16: [12,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0]
17: [13,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
18: [14,2,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
19: [15,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

Magic sequence: Is there a pattern? (Yes, at least for N>=7)

 N Solution
 --
 4: [1,2,1,0]
 5: [2,1,2,0,0]
 6: no solution
 7: [3,2,1,1,0,0,0]
 8: [4,2,1,0,1,0,0,0]
 9: [5,2,1,0,0,1,0,0,0]
10: [6,2,1,0,0,0,1,0,0,0]
11: [7,2,1,0,0,0,0,1,0,0,0]
12: [8,2,1,0,0,0,0,0,1,0,0,0]
13: [9,2,1,0,0,0,0,0,0,1,0,0,0]
14: [10,2,1,0,0,0,0,0,0,0,1,0,0,0]
15: [11,2,1,0,0,0,0,0,0,0,0,1,0,0,0]
16: [12,2,1,0,0,0,0,0,0,0,0,0,1,0,0,0]
17: [13,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
18: [14,2,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]
19: [15,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0]

Magic sequence: Non CP algorithm in Python3, for n >= 7

def magic_sequence(n):
 “””
 This works for n>=7.
 “””
 if n < 7:
 return []
 else:
 s = [0]*n
 s[0] = n-4
 s[1] = 2
 s[2] = 1
 s[n-4] = 1
 return s

print(magic_sequence(10)) # [6, 2, 1, 0, 0, 0, 1, 0, 0, 0]

For n=10 000 this program takes 0.04s. (Gecode takes 31.78s.)

Sometimes CP is not the fastest approach; but it’s often great for exploring problems.
The Python program was written after I played with the CP model.

Thirty bottles

Thirty bottles
 From Alcuins, via Paul Vaderlind "Klassisk Nöjesmatematik"

(“Classical recreational mathematics”), 2003, page 38.
 A man died and left 30 bottles to his 3 sons. 10 bottles

was filled with oil, 10 was half full with oil, and 10 was
empty. The wish of the man was that all the sons should
get the same amount of bottles and the same
amount of oil. How to distribute bottles and oil in a fair
way if it's not allowed to pour oil from one bottle to
another.

 How many solutions are there?

30 bottles: Parameters and decision variables

% parameters
int: n = 3; % number of bottle types

% how filled are the bottle types (the ratio)
% [filled, half filled, empty] = [1,1/2,0]
array[1..n] of int: t = [2,1,0]; % converted to integers

int: b = [10,10,10]; % number of bottles of each type
int: num_sons = 3; % number of sons

% derived parameters
int: tot_oil = sum([t[i]*b[i] | i in 1..n]); % total amount of oil
int: tot_bottles = sum(b); % total number of bottles

% decision variables
% How many bottles of each type should be distributed to each son
array[1..num_sons,1..n] of var 0..tot_oil: x;

30 bottles: Model

constraint
 forall(s in 1..num_sons) (
 % total number of bottles per son (row)
 % (convert to multiplication)
 num_sons*sum(x[s,..]) = tot_bottles /\

 % total amount of oil per son
 num_sons*sum([x[s,j]*t[j] | j in 1..n]) = tot_oil

 /\ % symmetry breaking (lexicographic order of rows)
 if s < num_sons then
 lex_lesseq(x[s,..],x[s+1,..])
 endif
)
 /\
 % check the the number of bottles of each type
 % i.e. the columns in the matrix.
 forall(j in 1..n) (
 sum(x[..,j]) = b[j]
);

30 bottles: First solution

[3, 4, 3] = 3+4+3 = 10 bottles First son
[3, 4, 3] = 3+3+3 = 10 bottles Second son
[4, 2, 4] = 4+2+4 = 10 bottles Third son

10 10 10 sums of columns (=number of bottles of each type)

How many liter oil per son?

We must use the original ratios [1,1/2,0],
not those in the model ([2,1,0]).

Son 1: [3, 4, 3]
3*1 + 4/2 + 3*0 = 3 + 2 + 0 = 5 liter oil

Son 2: [3, 4, 3]
3*1 + 4/2 + 3*0 = 3 + 2 + 0 = 5 liter oil

Son 3: [4, 2, 4]
4*1 + 2/2 + 4*0 = 4 + 1 + 0 = 5 liter oil

30 bottles: All solutions (i.e. 5 solutions)

[3, 4, 3]
[3, 4, 3]
[4, 2, 4]

[2, 6, 2]
[4, 2, 4]
[4, 2, 4]

[1, 8, 1]
[4, 2, 4]
[5, 0, 5]

[0, 10, 0]
[5, 0, 5]
[5, 0, 5]

[2, 6, 2]
[3, 4, 3]
[5, 0, 5]

==========

Without symmetry breaking there are 21 solutions.

Thirty bottles, variant
 Paul Vaderlind "Klassisk Nöjesmatematik", 2003,

page 40 (Problem 15)
 How to distribute 5 full, 8 half-full, and 11 empty

bottles of wine between three persons if each
person get the same number of bottles and the
same amout of wine. Find all solutions.

30 bottles: Problem 15, parameters

% parameters
int: n = 3; % number of bottle types
% how filled are the bottle types
array[1..n] of int: t = [2,1,0];
int: b = [5,8,11]; % number of bottles of each type
int: num_sons = 3; % number of sons

% … as before

30 bottles: Problem 15, solutions

[1, 4, 3]
[2, 2, 4]
[2, 2, 4]

[1, 4, 3]
[1, 4, 3]
[3, 0, 5]

[0, 6, 2]
[2, 2, 4]
[3, 0, 5]

==========

The Paris Marathon puzzle
A logic puzzle

The Paris Marathon puzzle
Dominique, Ignace, Naren, Olivier, Philippe, and Pascal have arrived as the first
six at the Paris marathon. Reconstruct their arrival order from the following
information:

a) Olivier has not arrived last

b) Dominique, Pascal and Ignace have arrived before Naren and Olivier

c) Dominique who was third last year has improved this year.

d) Philippe is among the first four.

e) Ignace has arrived neither in second nor third position.

f) Pascal has beaten Naren by three positions.

g) Neither Ignace nor Dominique are on the fourth position.

(From Guéret & Sevaux: “Programmation linéaire”, 2000)

The Paris Marathon: Parameters and decision variables

include "globals.mzn";
% Parameters
int: n = 6;
array[1..n] of string: runners_s =
 ["Dominique", "Ignace", "Naren", "Olivier", "Philippe", "Pascal"];

% Decision variables
var 1..n: Dominique;
var 1..n: Ignace;
var 1..n: Naren;
var 1..n: Olivier;
var 1..n: Philippe;
var 1..n: Pascal;
array[1..n] of var 1..n: runners =
 [Dominique, Ignace, Naren, Olivier, Philippe, Pascal];

solve satisfy;

The Paris Marathon: Constraints 1/2

constraint
 all_different(runners) /\

 % a: Olivier not last
 Olivier != n /\

 % b: Dominique, Pascal and Ignace before Naren and Olivier
 Dominique < Naren /\
 Dominique < Olivier /\
 Pascal < Naren /\
 Pascal < Olivier /\
 Ignace < Naren /\
 Ignace < Olivier /\

 % c: Dominique better than third
 Dominique < 3 /\

 % d: Philippe is among the first four
 Philippe <= 4 /\

 % cont...

The Paris Marathon: Constraints 2/2

% (cont)

 % e: Ignace neither second nor third
 Ignace != 2 /\
 Ignace != 3 /\

 % f: Pascal three places earlier than Naren
 Pascal + 3 = Naren /\

 % g: Neither Ignace nor Dominique on fourth position
 Ignace != 4 /\
 Dominique != 4
;

The Paris Marathon: Output section

output
[
 "Runners: \(runners)\n"
]
++
[
 if fix(runners[j]) = i then "Place \(i): \(runners_s[j])\n" endif
 | i in 1..n, j in 1..n
];

The Paris Marathon: Solution

[2, 1, 6, 5, 4, 3]
Place 1: "Ignace"
Place 2: "Dominique"
Place 3: "Pascal"
Place 4: "Philippe"
Place 5: "Olivier"
Place 6: "Naren"

% Dominique Ignace Naren Olivier Philippe Pascal
Runners: [2, 1, 6, 5, 4, 3]

The clues again:
a) Olivier has not arrived last
b) Dominique, Pascal and Ignace have arrived before Naren
 and Olivier
c) Dominique who was third last year has improved this year.
d) Philippe is among the first four.
e) Ignace has arrived neither in second nor third position.
f) Pascal has beaten Naren by three positions.
g) Neither Ignace nor Dominique are on the fourth position.

Labeled dice
Global cardinality count

Labeled dice
(From Humphrey Dudley via Jim Orlin)

 My daughter Jenn bough a puzzle book, and showed me a
cute puzzle. There are 13 words as follows: BUOY, CAVE,
CELT, FLUB, FORK, HEMP, JUDY, JUNK, LIMN, QUIP, SWAG,
VISA, WISH.

 There are 24 different letters that appear in the 13 words.
The question is: can one assign the 24 letters to 4
different cubes so that the four letters of each word
appears on different cubes. (There is one letter from each
word on each cube.)

Labeled dice: The setup

int: n = 4;
int: num_words = 13;

enum letters = {A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,Y};
array[1..num_words, 1..n] of int: words = array2d(1..num_words, 1..n,
 [
 B,U,O,Y, C,A,V,E, C,E,L,T, F,L,U,B, F,O,R,K,
 H,E,M,P, J,U,D,Y, J,U,N,K, L,I,M,N, Q,U,I,P,
 S,W,A,G, V,I,S,A, W,I,S,H
]);

% Decision variables: At which die should a letter be placed?
array[1..24] of var 1..n: dice;

solve satisfy;

Labeled dice: Constraints and symmetry breaking

constraint
 % the letters in a word must be on a different die
 forall(i in 1..num_words) (
 alldifferent([dice[words[i,j]] | j in 1..n])
)
 /\
 % there must be exactly 6 letters of each die
 global_cardinality(dice, [i | i in 1..n], [6 | i in 1..n]);

% There are 24 different solutions.
% This symmetry breaking yields just 1 solution.
constraint
 dice[1] < dice[7] /\ % first letter of die 1 vs die 2
 dice[7] < dice[13] /\ % die 2 vs die 3
 dice[13] < dice[19] % die 3 vs die 4
;

Labeled dice: Output

{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, Y}
dice:
[1, 2, 4, 2, 2, 4, 2, 1, 2, 1, 2, 1, 3, 4, 1, 4, 1, 3, 4, 3, 3, 3, 3, 4]

die: 1: A H J L O Q
die: 2: B D E G I K
die: 3: M R T U V W
die: 4: C F N P S Y

BUOY
CAVE
CELT
FLUB
FORK
HEMP
JUDY
JUNK
LIMN
QUIP
SWAG
VISA
WISH

Five 5-letter words that share no
common letter

Five words share no letters

 Find five five-letter words that has no letter in common. Get all
possible solutions.

 From Matt Parker (Stand-Up Maths)
 https://www.youtube.com/watch?v=_-AfhLQfb6w

 Preprocessing:
- sort words (10175 from a word list) and collect anagrams
- convert words to list of integers
- write as a MiniZinc datafile (.dzn)

(→ 5977 anagrams)

Five letter words: Data file (converted from a word list)

num_words=5977;
% The anagrams
words = array2d(1..num_words,1..5,[

1,2,3,5,8, % abceh: ‘bache’ and ’beach’
1,2,3,5,9, % abcei: ‘ceibal’
1,2,3,5,12, % abcel: ‘cable’ and ‘caleb’
1,2,3,5,16, % abcep: ‘becap’
1,2,3,5,18, % abcer: ‘acerb’,’brace’,’caber’,and ’cabre’

 …
]);

% Words covered by an anagram
words_s = [
"[bache,beach]", % Words for the first anagram
"[ceiba]",
"[cable,caleb]",
"[becap]",
"[acerb,brace,caber,cabre]",
…
]);

Five letter words: The model

% ...
array[1..num_words,1..n] of int: words; % anagrams as integer arrays
array[1..num_words] of string: words_s; % covered words as strings

array[1..n] of var 1..num_words: x; % The words (index)
array[1..n,1..n] of var 1..26: y; % The individual characters

constraint
 % The words (anagrams) are distinct and ordered
 all_different(x) /\
 increasing(x) /\ % symmetry breaking

 % The letters are distinct
 all_different(y) /\

 % Connect the selected word and the characters
 forall(i,j in 1..n) (
 y[i,j] = words[x[i],j]
)
;
output ["\([words_s[fix(x[i])] | i in 1..n])\n"];

Five letter words: Solution

["[japyx]", "[bortz]", "[chivw]", "[dunks]", "[flegm]"]

["[knyaz]", "[bumps]", "[chivw]", "[fldxt]", "[jorge]"]

["[japyx]", "[bilks]", "[fconv]", "[zhmud]", "[grewt]"]

["[ampyx]", "[bortz]", "[chivw]", "[fjeld]", "[gunks]"]

["[japyx]", "[bongs]", "[chivw]", "[fremd]", "[klutz]"]

["[swack,wacks]", "[vibex]", "[fjord]", "[glyph]", "[muntz]"]

["[gravy]", "[bumph]", "[jocks]", "[fldxt]", "[winze,wizen]"]

...
["[whank]", "[gumby]", "[crips,crisp,scrip]", "[fldxt]", "[vejoz]"]

...

Five letter words: labeling

 In earlier CP talks, I talked quite much on search
strategies (a.k.a. labeling):
first_fail, most_constrained, indomain_split, etc.

 Nowadays, it’s easier to use “solve satisfy” and just testing
different solvers, e.g.
- OR-tools CP-SAT (with/without -f + -p <n_threads>)
- Chuffed (with/without -f + -p)
- PicatSAT
- Gecode (with/without -f + -p)
- HiGHs, Geas, etc

Five letter words: labeling
But.

 For this problem, the fastest configuration I’ve
found is Gecode using
- first_fail, indomain_reverse_split
- p 22 (number of threads)

 Time to show all solutions: 16.8s
(dedicated algos can be quite faster, <1s)

Just forgotten

Just forgotten
 Joe was furious when he forgot one of his bank account numbers.

He remembered that it had all the digits 0 to 9 in some order, so he tried the
following four sets without success:

9 4 6 2 1 5 7 8 3 0

8 6 0 4 3 9 1 2 5 7

1 6 4 0 2 9 7 8 5 3

6 8 2 4 3 1 9 0 7 5
 When Joe finally remembered his account number, he realised that

in each set just four of the digits were in their correct position and
that, if one knew that, it was possible to work out his account number. What
was it? (Enigma puzzle #1517)

Just forgotten: The model

int: rows = 4;
int: cols = 10;
array[1..rows, 1..cols] of 0..9: a;
array[1..cols] of var 0..9: x;
solve satisfy;

constraint all_different(x);

% In each set exactly 4 digits are in the correct position
constraint
 forall(r in 1..rows) (
 sum([x[c] = a[r,c] | c in 1..cols]) = 4
)
;

a = array2d(1..rows, 1..cols,
 [9,4,6,2,1,5,7,8,3,0,
 8,6,0,4,3,9,1,2,5,7,
 1,6,4,0,2,9,7,8,5,3,
 6,8,2,4,3,1,9,0,7,5]);

Just forgotten: Solution

x: [9, 6, 2, 4, 3, 1, 7, 8, 5, 0]

==========

“Just four of the digits were in their correct position.”

9 4 6 2 1 5 7 8 3 0
8 6 0 4 3 9 1 2 5 7
1 6 4 0 2 9 7 8 5 3
6 8 2 4 3 1 9 0 7 5

Just forgotten
Generating instances

Generating instances
 Use CP to generate instances.
 Add extra constraints to ensure all requirements
 To guarantee a unique solution of the instance,

we have to check the number of solutions.
This is not supported in MiniZinc.

 Here’s an approach using MiniZinc-Python
https://minizinc-python.readthedocs.io/en/latest/

Generating instances
Two steps:

 10 Generate a candidate matrix A
 20 If more than one solution (X) -> goto 10
 30 Print A and X

Generating instances: The model

int: rows = 4;
int: cols = 10;
array[1..rows, 1..cols] of var 0..9: a;
array[1..cols] of var 0..9: x;

solve :: int_search(array1d(a) ++ x,first_fail,indomain_random)
 :: restart_linear(1000) % faster
 satisfy;

constraint
 all_different(x) /\
 forall(r in 1..rows) (
 all_different(a[r,..]) /\
 sum([x[c] = a[r,c] | c in 1..cols]) = 4
)
 /\ % Each element in x[c] must have some match in a[..,c]
 forall(c in 1..cols) (
 sum([x[c] = a[r,c] | r in 1..rows]) >= 1
);

Generating instances: MiniZinc-Python program

from minizinc import Instance, Model, Solver
import random

def gen(a=None):
 just_forgotten = Model("./just_forgotten_generate.mzn")
 sol = Solver.lookup("gecode")
 instance = Instance(sol, just_forgotten)
 # Step 1: Generate a candidate matrix a
 if a == None:
 result = instance.solve(random_seed=random.randint(0,1000000))
 return(result["a"])
 # Check the number of solutions
 instance["a"] = a
 result = instance.solve(nr_solutions=2) # we want only one solution
 num_sols = len(result)
 if num_sols == 1:
 return True, result[0,"x"]
 else:
 return False, ""

Generating instances: MiniZinc-Python

g = 0
while True:
 g += 1
 print("\ngeneration:",g)
 a = gen()
 ret,x = gen(a)
 if ret == True:
 % Output in .dzn format
 print("a = array2d(1..rows, 1..cols,[")
 for i in range(4):
 for j in range(10):
 print(a[i][j],end=", ")
 print()
 print("]);")
 print("% x:",x)
 break

print("generations:", g)

Generating instances: Output (2 different runs)

a = array2d(1..rows, 1..cols,[
9, 1, 6, 7, 8, 0, 3, 5, 2, 4,
1, 6, 0, 9, 3, 7, 2, 5, 8, 4,
7, 9, 2, 3, 8, 0, 6, 4, 1, 5,
9, 6, 1, 4, 3, 8, 0, 5, 2, 7,
]);
% x: [9, 6, 2, 3, 8, 7, 0, 5, 1, 4]
Generations: 1

###
a = array2d(1..rows, 1..cols,[
5, 2, 1, 4, 9, 6, 7, 3, 8, 0,
3, 0, 8, 1, 6, 4, 7, 5, 2, 9,
2, 8, 3, 0, 9, 1, 4, 5, 7, 6,
1, 6, 9, 4, 5, 2, 7, 3, 8, 0,
]);
% x: [2, 6, 3, 1, 9, 4, 7, 5, 8, 0]
generations: 1

Generating instances
 Some extra constraints are required to make the problem

instance harder/easier, neater etc.
 Here’s one generated instance with three 7s in a column

 5 2 1 4 9 6 7 3 8 0
 3 0 8 1 6 4 7 5 2 9
 2 8 3 0 9 1 4 5 7 6
 1 6 9 4 5 2 7 3 8 0
 ^
 |

 We want to ensure that there are at most 2 duplicate values,
i.e. at least 3 distinct values

 Use a global constraint to count the distinct values:
nvalue(array)

Generating instances: The MiniZinc model, adding nvalue/1

constraint
 % ...
 /\
 forall(c in 1..cols) (
 sum([x[c] = a[r,c] | r in 1..rows]) >= 1
 /\
 % at least 3 different values
 nvalue(a[..,c]) >= 3
);

%%% Example output
% {0,5,6,8,3,4,9,2,7,1}
% {5,0,3,2,8,6,9,7,4,1}
% {1,2,7,9,3,4,5,8,0,6}
% {7,0,1,2,5,9,4,8,6,3}
% x = [5,0,1,2,3,4,9,8,7,6]

Generating instances: Picat
 Picat is a multi-paradigm programming language

http://picat-lang.org/
 Logic programming: a large subset of Prolog (unification,

non-determinism, etc)
 Constraints: CP, SAT, MIP, SMT
 Imperative: for-loop, while loop, reassignments, list/array

comprehensions
 Functions
 Tabling (memoization)

Generating instances: Picat (the model)

just_forgotten(A,Xs) =>
 N = 10, M = 4,
 A = new_array(M,N), A :: 0..9, % decision variables
 Xs = new_list(10), Xs :: 0..9,

 foreach(I in 1..M)
 all_different(A[I])
 end,
 all_different(Xs),
 foreach(I in 1..M)
 sum([Xs[J] #= A[I,J] : J in 1..N]) #= 4
 end,
 foreach(J in 1..N)
 sum([Xs[J] #= A[I,J] : I in 1..M]) #>= 1,
 nvalue(C,[A[I,J] : I in 1..M]), C #>= 3
 end,

 Vars = Xs ++ A.vars,
 solve($[ff,split,limit(2)],Vars). % generate at most 2 solutions

Generating instances: Picat (caller program)

import cp. % or sat, mip, smt.
main =>
 _ = random2(),
 % Get a candidate for the A rows
 just_forgotten(A,_),

 % Check if unique solution
 All = find_all(Xs,just_forgotten(A,Xs)),
 if All.len == 1 then
 % Print the solution
 foreach(Row in A)
 println(Row)
 end,
 printf(“% %w\n”,All[1]),
 else
 % if not a unique solution: backtrack
 fail
 end,
 nl.

Generating instances: Picat output

{1,0,8,2,6,4,5,7,9,3}
{1,2,7,3,9,4,5,0,8,6}
{3,6,0,2,8,5,7,4,9,1}
{6,3,8,7,9,2,4,0,5,1}
X = [6,3,7,2,8,4,5,0,9,1]

%%%%%%
{6,5,7,8,9,1,0,2,4,3}
{7,3,8,2,9,6,1,4,5,0}
{6,9,8,7,4,2,1,0,5,3}
{9,2,1,0,6,8,5,4,3,7}
x = [6,2,7,0,9,8,1,4,5,3]

Generating instances: Specific solution

just_forgotten(A,Xs) =>
 % ...
 % We want this as a solution
 Xs = [5,0,1,2,3,4,9,8,7,6],
 % ...

%%%%%%% Solution
{0,5,6,8,3,4,9,2,7,1}
{5,0,3,2,8,6,9,7,4,1}
{1,2,7,9,3,4,5,8,0,6}
{7,0,1,2,5,9,4,8,6,3}
x = [5,0,1,2,3,4,9,8,7,6]

Sicherman Dice

Sicherman Dice
http://en.wikipedia.org/wiki/Sicherman_dice

"""

Sicherman dice are the only pair of 6-sided dice
which are not normal dice, bear only positive
integers, and have the same probability
distribution for the sum as normal dice.

“””

Sicherman Dice: Model

include "globals.mzn";
int: n = 6;
int: m = 10; % max value

% standard distribution
array[2..12] of int: standard_dist = array1d(2..12, [1,2,3,4,5,6,5,4,3,2,1]);

% the two dice
array[1..n] of var 1..m: d1;
array[1..n] of var 1..m: d2;

constraint
 forall(k in 2..12) (
 standard_dist[k] = sum(i,j in 1..n) (d1[i]+d2[j] == k))
)
 % symmetry breaking
 /\ increasing(d1)
 /\ increasing(d2)
 /\ lex_lesseq(x1, x2)
;

Sicherman Dice: Solution

% The Sicherman Dice
x1: [1, 2, 2, 3, 3, 4]
x2: [1, 3, 4, 5, 6, 8]

% Plain dice
x1: [1, 2, 3, 4, 5, 6]
x2: [1, 2, 3, 4, 5, 6]

Sicherman Dice: Allowing 0 as a value

% ...
array[1..n] of var 0..m: d1; % instead of 1..m
array[1..n] of var 0..m: d2;

% …

Sicherman Dice: Allowing 0 as a value

x1: [0, 1, 1, 2, 2, 3]
x2: [2, 4, 5, 6, 7, 9]

x1: [0, 1, 2, 3, 4, 5]
x2: [2, 3, 4, 5, 6, 7]

x1: [0, 2, 3, 4, 5, 7]
x2: [2, 3, 3, 4, 4, 5]

x1: [1, 2, 2, 3, 3, 4]
x2: [1, 3, 4, 5, 6, 8]

x1: [1, 2, 3, 4, 5, 6]
x2: [1, 2, 3, 4, 5, 6]

==========

Move one coin

Move one coin
 From this configuration of coins

 o oo ooo oooo

move one coin to get the coins in the reverse
order, i.e. the number of collected coins are 4, 3,
2, and 1.

(Scam Nation video, Aug 19, 2021)

Move one coin: Model

int: n = 13;
% 0 represents an empty position
array[1..n] of int: goal = [1,0,1,1,0,1,1,1,0,1,1,1,1]; % initial pos
array[1..n] of int: init = [1,1,1,1,0,1,1,1,0,1,1,0,1]; % goal pos

% decision variables
var 1..n: from;
var 1..n: to;

solve satisfy;
constraint
 init[from]= 1 /\ init[to] = 0 /\
 forall(k in 1..n) (
 if k != from /\ k != to then
 goal[k] = init[k]
 endif
);

output [
 "Move the coin in position \(from) to empty position \(to)\n",
];

Move one coin: Solution

Move the coin in position 12 to empty position 2

==========

1234567890123 positions

o oo ooo oooo init
 |
 | position 12
 _________v
 |
 v position 2
oooo ooo oo o goal

A Round of Golf
Logic puzzle

Element constraint

Element constraint
 CP’s version of indexing an array/matrix
 In MiniZinc, this is stated as

 z = x[y]
 x: an array of integers or decision variables
 y: integer/enum or decision variable
 z: integer/enum or decision variable
 In other CP systems this is called element(y,x,z) etc

A Round of Golf (I)
(Dell Favorite Logic Problems, Summer 2000)

Jack and three other golf club workers got together on
their day off to play a round of eighteen holes of golf.

Afterward, all four, including Mr. Green, went to the
clubhouse to total their scorecards. Each man works
at a different job (one is a short-order cook), and each
shot a different score in the game. No one scored
below 70 or above 85 strokes.
(cont)

A Round of Golf (II)
From the clues below, can you discover each man's full
name, job and golf score?
1. Bill, who is not the maintenance man, plays golf often and
had the lowest score of the foursome.
2. Mr. Clubb, who isn't Paul, hit several balls into the woods
and scored ten strokes more than the pro-shop clerk.
3. In some order, Frank and the caddy scored four and seven
more strokes than Mr. Sands.
4. Mr. Carter thought his score of 78 was one of his better
games, even though Frank's score was lower.
5. None of the four scored exactly 81 strokes.

A Round of Golf: Parameters and decision variables

include "globals.mzn";
set of int: d = 1..4;
enum first_name = {Jack, Bill, Paul, Frank}; % Fixed values

% decision variables
% Which first name (1..4) is a last name related to?
var d: Green;
var d: Clubb;
var d: Sands;
var d: Carter;
array[d] of var d: last_name = [Green, Clubb, Sands, Carter];

var d: cook;
var d: maintenance_man;
var d: clerk;
var d: caddy;
array[d] of var d: job = [cook, maintenance_man, clerk, caddy];

array[d] of var 70..85: score;

A Round of Golf: Constraints (1)

Constraint
 % implicit constraints
 all_different(last_name) /\
 all_different(job) /\
 all_different(score) /\ % This is stated explicit

 % 1. Bill, who is not the maintenance man, plays golf often and had
 % the lowest score of the foursome.
 Bill != maintenance_man /\
 score[Bill] < score[Jack] /\ % Bill is a constant
 score[Bill] < score[Paul] /\
 score[Bill] < score[Frank]/\

 % 2. Mr. Clubb, who isn't Paul, hit several balls into the woods and
 % scored ten strokes more than the pro-shop clerk.
 Clubb != Paul /\
 % Clubb is a decision variable
 score[Clubb] = score[clerk] + 10
;

A Round of Golf: Constraints (2)

constraint
 % 3. In some order, Frank and the caddy scored four and seven more
 % strokes than Mr. Sands.
 Frank != caddy /\
 Frank != Sands /\
 caddy != Sands /\
 (
 (score[Frank] = score[Sands] + 4 /\
 score[caddy] = score[Sands] + 7)
 \/
 (score[Frank] = score[Sands] + 7 /\
 score[caddy] = score[Sands] + 4)
)
 /\
 % 4. Mr. Carter thought his score of 78 was one of his better
 % games, even though Frank's score was lower.
 Frank != Carter /\
 score[Carter] = 78 /\
 score[Frank] < score[Carter]
;

A Round of Golf: Constraints (3)

constraint
 % 5. None of the four scored exactly 81 strokes.
 forall(i in d) (
 score[i] != 81
)
;

A Round of Golf: Solution

first_name: {Jack, Bill, Paul, Frank}
last_name : [4, 1, 2, 3]
Job : [2, 1, 4, 3]
score : [85, 71, 78, 75]

Jack Clubb maintenance man 85
Bill Sands cook 71
Paul Carter caddy 78
Frank Green clerk 75

==========

For Bill (id 2) we look up the value of 2 in last_name and job.

The lookup string arrays for last_name and job:

last_name_s = ["Green", "Clubb", "Sands", "Carter"];
job_s = ["cook", "maintenance man", "clerk", "caddy"];

A Round of Golf: Output section

array[d] of string: job_s = ["cook", "maintenance man", "clerk", "caddy"];
array[d] of string: last_name_s = ["Green", "Clubb", "Sands", "Carter"];

output [
 "first_name: \(first_name)\n",
 "last_name : \(last_name)\n",
 "job : \(job)\n",
 "score : \(score)\n\n",
]
++
[
 "\(first_name[i]) " ++

 % looking up which last_name[j] has the value i
 [last_name_s[j] | j in r where fix(last_name[j]) = i][1] ++ " " ++

 [job_s[j] | j in r where fix(job[j]) = i][1] ++ " " ++
 "\(score[i])\n"
 | i in r
];

Nontransitive dice

Nontransitive dice
http://en.wikipedia.org/wiki/Nontransitive_dice

“””

A set of dice is intransitive (or nontransitive) if it contains three dice,
A, B, and C, with the property that A rolls higher than B more than
half the time, and B rolls higher than C more than half the time, but
it is not true that A rolls higher than C more than half the time.
“””

In short
 A |> B, B |> C, C |> A
where ‘|>’ means ‘rolls higher more than half the time’.
I.e. the relation is not transitive.

Nontransitive dice
 Simple example: Three d4 dice

A: 1 2 4 5
B: 1 3 4 4
C: 3 3 3 4

 1 2 4 5 : A win 0 + 1 + 2 + 4 = 7 (A > B)
1 3 4 4 : B win 0 + 2 + 2 + 2 = 6

 1 3 4 4 : B win 0 + 0 + 3 +3 = 6 (B > C)
3 3 3 4 : C win 1 + 1 + 1 + 2 = 5

 3 3 3 4 : C win 2 + 2 + 2 + 2 = 8 (C > A)
1 2 4 5 : A win 0 + 0 + 3 + 4 = 7

Nontransitive dice: The setup

include "globals.mzn";
int: m = 3; % number of dice
int: n = 4; % number of sides of each die

int: max_val = 6; % max value of each die

% Decision variables: The dice
array[1..m, 1..n] of var 1..max_val: dice;

%
% The competitions:
% die 1 vs die 2, die 2 vs die 1
% die 2 vs die 3, die 3 vs die 2
% ...
% die m vs die 1, die 1 vs die m
%
array[0..m-1, 1..2] of var 0..n*n: comp;

Nontransitive dice: Constraints

constraint
 % Number of wins for [d1 vs d2, d2 vs d1]
 forall(d in 0..m-1) (
 let {
 int: d1 = 1+(d mod m); % "This” die
 int: d2 = 1+((d + 1) mod m); % "Next” die
 } in
 comp[d,1] = sum(r1, r2 in 1..n) (dice[d1, r1] > dice[d2, r2]) /\
 comp[d,2] = sum(r1, r2 in 1..n) (dice[d2, r1] > dice[d1, r2])
)
 /\
 % Nontransitivity
 % All dice 1..m-1 must beat the follower, and die m must beat die 1
 forall(d in 0..m-1) (
 comp[d,1] > comp[d,2]
)
 /\ % Symmetry breaking: order the number of each die
 forall(d in 1..m) (
 increasing([dice[d,i] | i in 1..n])
)
 /\ lex2(dice) % lexicographic order of the dice
;

Nontransitive dice: One solution for three d4

dice:
 1 2 4 5 % A
 1 3 4 4 % B
 3 3 3 4 % C
comp:
 7 6 % A > B
 6 5 % B > C
 8 7 % C > A

Nontransitive dice: Two solutions for four d6 (m=4, n=6)

dice:
 1 2 5 5 5 6
 1 4 4 4 6 6
 2 2 3 5 6 6
 2 2 5 5 5 6
comp:
 17 16
 17 15
 14 13
 13 11

dice:
 1 2 2 6 6 6
 1 5 5 5 5 6
 2 4 4 4 6 6
 3 3 3 5 6 6
comp:
 17 15
 20 14
 17 15
 18 12

Nontransitive dice: Six d6, all_different(dice)

m=6;
n=6;
max_val=m*n;

constraint all_different(array1d(dice));
% and the same constraints as original model

% One solution of many
dice:
 1 10 11 14 34 35
 2 9 13 16 32 33
 3 5 7 29 31 36
 4 25 26 27 28 30
 6 17 18 19 22 23
 8 12 15 20 21 24
comp:
 19 17
 19 17
 19 17
 30 6
 19 17
 20 16

Huey, Dewey, and Louie
Reification

Huey, Dewey, and Louie
Huey, Dewey and Louie are being questioned by their uncle.
These are the statements they make:

 Huey: Dewey and Louie has equal share in it; if one is quitly, so is the
other.

 Dewey: If Huey is guilty, then so am I.
 Louie: Dewey and I are not both quilty.
 Their uncle, knowing that they are cub scouts, realises that they cannot

tell a lie. Has he got sufficient information to decide who (if any) are
quilty?

(Marriott & Stuckey: “Programming with Constraints”, 1998, page 42)

Huey, Dewey, and Louie: Model

% decision variables
% true: is guilty false: is not guilty
var bool: huey;
var bool: dewey;
var bool: louie;

solve satisfy;

constraint
 % Huey: Dewey and Louie has equal share in it;
 % if one is quitly, so is the other.
 (dewey <-> louie)

 % Dewey: If Huey is guilty, then so am I.
 /\ (huey -> dewey)

 % Louie: Dewey and I are not both quilty.
 /\ (not (dewey /\ louie));

Huey, Dewey, and Louie: Solution

[false, false, false]

==========

I.e. all three are innocent.

Short history of CP
 60s-70s: using constraint satisfaction techniques, especially for graphical

systems
 80s: integrated with logic programming (Prolog) to create Constraint

Logic Programming (CLP). Much theoretical work on the underlying
principles as well as global constraints.

 90s and onward: CP integrated in other systems (C++, Java, Python, etc)
 2010s: Integration of CP with SAT and other techniques: Lazy Clause

Generation, Hybrid CP-SAT systems.
MiniZinc is recognized as a de facto standard for comparing constraint
solvers. MiniZinc Challenge since 2008.

 2020s: Still much theoretical work on principles and adding global
constraints.

MiniZinc solving steps
Solving a MiniZinc problem is done in two steps:

 1) First the model (.mzn) + data (.dzn) is
converted to a FlatZinc file (.fzn) for the specific
solver. This is a flattened version of the model.

 2) Then the selected FlatZinc solver is called
which then solves the problem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316

