/* Problem 18 """ By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below: 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) """ Note: This program use the GOSPL library for the split_with function: http://www.cs.bham.ac.uk/research/projects/poplog/gospl_1_2_0.tar.gz This Pop-11 program was created by Hakan Kjellerstrand (hakank@gmail.com). See also my Pop-11 / Poplog page: http://www.hakank.org/poplog/ */ compile('~/Poplib/init.p'); vars tri = []; vars ms = 0; define pp(row, column, sum); row+1->row; if row == length(tri)+1 then if sum > ms then sum->ms; endif; return; endif; lvars i; for i from 0 to 1 do pp(row,column+i, sum+tri(row)(column+i)); endfor; enddefine; define problem18(); vars tri_lines, tri; vars tri_str = '75\ 95 64\ 17 47 82\ 18 35 87 10\ 20 04 82 47 65\ 19 01 23 75 03 34\ 88 02 77 73 07 63 67\ 99 65 04 28 06 16 70 92\ 41 41 26 56 83 40 80 70 33\ 41 48 72 33 47 32 37 16 94 29\ 53 71 44 65 25 43 91 52 97 51 14\ 70 11 33 28 77 73 17 78 39 68 17 57\ 91 71 52 38 17 14 91 43 58 50 27 29 48\ 63 66 04 68 89 53 67 30 73 16 69 87 40 31\ 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23'; [%split_with(tri_str, '\n')%] -> tri_lines; lvars i,x; ;;; for i from 1 to length(tri_lines) do ;;; ;;;lvars p = [%split(tri_lines(i))%]; ;;; ;;; strnumber to convert the strings to number ;;; ;;;[% for x in p do strnumber(x) endfor%]->p; ;;; ;;; as a one liner: ;;; lvars p = [%split(tri_lines(i))%].maplist(%procedure(e); strnumber(e); endprocedure%); ;;; tri <> [^p]->tri; ;;; endfor; [% for i from 1 to length(tri_lines) do [%split(tri_lines(i))%].maplist(%procedure(e); strnumber(e); endprocedure%); endfor %]->tri; pp(1,1, tri(1)(1)); ms=>; enddefine; 'problem18()'=> problem18();