/* Euler problem 38 """ Take the number 192 and multiply it by each of 1, 2, and 3: 192 × 1 = 192 192 × 2 = 384 192 × 3 = 576 By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3) The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5). What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1? """ This Pop-11 program was created by Hakan Kjellerstrand (hakank@gmail.com). See also my Pop-11 / Poplog page: http://www.hakank.org/poplog/ */ compile('/home/hakank/Poplib/init.p'); define is_pandigital(ll); if length(ll) = 9 and not(issubstring('0',ll)) then lvars hash=newmapping([], 9, 0, true); lvars l; for l in ll.unpackitem do 1->hash(l); endfor; if [%explode(hash)%].length = 9 then return(true); endif; endif; return(false); enddefine; define problem38; lvars max_n = 0; lvars s = ''; lvars n; for n from 9876 by - 1 to 9 do n >< ''->s; if s(1) = 49+9 then nextloop; endif; lvars i = 2; while length(s) < 9 do s >< (n*i) -> s; i+1->i; endwhile; lvars len = length(s); if i = 2 or strnumber(s) < 918273645 or len /= 9 then nextloop; endif; if len = 9 and is_pandigital(s) then s->max_n; quitloop; endif; endfor; max_n=> enddefine; 'problem38()'=> problem38();