#| Euler #18 in Racket Problem 18 """ By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom of the triangle below: 75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o) """ This Racket program was created by Hakan Kjellerstrand, hakank@gmail.com See also my Racket page: http://www.hakank.org/racket/ |# #lang racket (provide (all-defined-out)) ;;; (require math/number-theory) ;;; (require racket/trace) (require (only-in "utils_hakank.rkt" time-function list-ref2d )) (define *tri* '((75) (95 64) (17 47 82) (18 35 87 10) (20 4 82 47 65) (19 1 23 75 3 34) (88 2 77 73 7 63 67) (99 65 4 28 6 16 70 92) (41 41 26 56 83 40 80 70 33) (41 48 72 33 47 32 37 16 94 29) (53 71 44 65 25 43 91 52 97 51 14) (70 11 33 28 77 73 17 78 39 68 17 57) (91 71 52 38 17 14 91 43 58 50 27 29 48) (63 66 4 68 89 53 67 30 73 16 69 87 40 31) ( 4 62 98 27 23 9 70 98 73 93 38 53 60 4 23))) ;;; cpu time: 1 real time: 1 gc time: 0 (define (euler18a) ;;; Dynamic programming (define (pp row column sum max_val) (if (and (>= (add1 row) (length *tri*)) (> sum max_val)) sum (apply max (for/list ([i (range 2)]) (pp (add1 row) (+ column i) (+ sum (list-ref2d *tri* (add1 row) (+ column i))) (if (> sum max_val) sum max_val) ))) )) (pp 0 0 (list-ref2d *tri* 0 0) 0) ) (define (run) (time-function euler18a) ) (run)